Vehicle detection of multi-source remote sensing data using active fine-tuning network

被引:48
作者
Wu, Xin [1 ,2 ]
Li, Wei [1 ,2 ]
Hong, Danfeng [3 ]
Tian, Jiaojiao [3 ]
Tao, Ran [1 ,2 ]
Du, Qian [4 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, D-82234 Wessling, Germany
[4] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Multi-source; Vehicle detection; Optical remote sensing imagery; Fine-tuning; Segmentation; Active classification network; OBJECT DETECTION; CLASSIFICATION; IMAGES;
D O I
10.1016/j.isprsjprs.2020.06.016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 50 条
  • [41] A spatiotemporal collaborative approach for precise crop planting structure mapping based on multi-source remote-sensing data
    Sun, Yingwei
    Yao, Na
    Luo, Jiancheng
    Leng, Pei
    Liu, Xiangyang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (19-20) : 7435 - 7451
  • [42] Multi-Source Remote Sensing Data for Wetland Information Extraction: A Case Study of the Nanweng River National Wetland Reserve
    Yu, Hao
    Li, Shicheng
    Liang, Zhimin
    Xu, Shengnan
    Yang, Xin
    Li, Xiaoyan
    [J]. SENSORS, 2024, 24 (20)
  • [43] Inversion of Forest Biomass Based on Multi-Source Remote Sensing Images
    Zhang, Danhua
    Ni, Hui
    [J]. SENSORS, 2023, 23 (23)
  • [44] SSDAN: Multi-Source Semi-Supervised Domain Adaptation Network for Remote Sensing Scene Classification
    Lasloum, Tariq
    Alhichri, Haikel
    Bazi, Yakoub
    Alajlan, Naif
    [J]. REMOTE SENSING, 2021, 13 (19)
  • [45] Bayesian Vehicle Detection Using Optical Remote Sensing Images
    Gharbi, Walma
    Chaari, Lotfi
    Benazza-Benyahia, Amel
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2018, 2018, 11182 : 258 - 269
  • [46] Rapid Large-Scale Wetland Inventory Update Using Multi-Source Remote Sensing
    Igwe, Victor
    Salehi, Bahram
    Mahdianpari, Masoud
    [J]. REMOTE SENSING, 2023, 15 (20)
  • [47] UAV-Based Vehicle Detection by Multi-source Images
    Jiang, Shangjie
    Luo, Bin
    Liu, Jun
    Zhang, Yun
    Zhang, LiangPei
    [J]. COMPUTER VISION, PT III, 2017, 773 : 38 - 49
  • [48] Multi-source remote sensing data reveals complex topsoil organic carbon dynamics in coastal wetlands
    Villoslada, Miguel
    Sipelgas, Liis
    Ward, Raymond D.
    Reintam, Endla
    Astover, Alar
    Kumpula, Timo
    Sepp, Kalev
    [J]. ECOLOGICAL INDICATORS, 2022, 143
  • [49] Air Pollution Exposure Based on Nighttime Light Remote Sensing and Multi-source Geographic Data in Beijing
    Zhang, Zheyuan
    Wang, Jia
    Xiong, Nina
    Liang, Boyi
    Wang, Zong
    [J]. CHINESE GEOGRAPHICAL SCIENCE, 2023, 33 (02) : 320 - 332
  • [50] Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
    Raza, Aamir
    Shahid, Muhammad Adnan
    Zaman, Muhammad
    Miao, Yuxin
    Huang, Yanbo
    Safdar, Muhammad
    Maqbool, Sheraz
    Muhammad, Nalain E.
    [J]. REMOTE SENSING, 2025, 17 (05)