Vehicle detection of multi-source remote sensing data using active fine-tuning network

被引:48
|
作者
Wu, Xin [1 ,2 ]
Li, Wei [1 ,2 ]
Hong, Danfeng [3 ]
Tian, Jiaojiao [3 ]
Tao, Ran [1 ,2 ]
Du, Qian [4 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, D-82234 Wessling, Germany
[4] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Multi-source; Vehicle detection; Optical remote sensing imagery; Fine-tuning; Segmentation; Active classification network; OBJECT DETECTION; CLASSIFICATION; IMAGES;
D O I
10.1016/j.isprsjprs.2020.06.016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 50 条
  • [1] Adaptive multi-source domain collaborative fine-tuning for transfer learning
    Feng, Le
    Yang, Yuan
    Tan, Mian
    Zeng, Taotao
    Tang, Huachun
    Li, Zhiling
    Niu, Zhizhong
    Feng, Fujian
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [2] Research on Spiking Neural Network fine-tuning method for object detection in remote sensing images
    Guo, Bailin
    Huang, Liwei
    Lu, Yao
    Zhang, Xuetao
    Ma, Yongqiang
    National Remote Sensing Bulletin, 2024, 28 (07) : 1702 - 1712
  • [3] Machine Learning Techniques for Fine Dead Fuel Load Estimation Using Multi-Source Remote Sensing Data
    D'Este, Marina
    Elia, Mario
    Giannico, Vincenzo
    Spano, Giuseppina
    Lafortezza, Raffaele
    Sanesi, Giovanni
    REMOTE SENSING, 2021, 13 (09)
  • [4] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [5] A Decision Fusion method to Interpret Faults using Multi-Source Remote Sensing Data
    Li, Xue
    Wang, Qiuliang
    Chen, Zhoufeng
    Qi, Xin
    Shao, Changsheng
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 641 - 644
  • [6] MFFNet: A Building Extraction Network for Multi-Source High-Resolution Remote Sensing Data
    Liu, Keliang
    Xi, Yantao
    Liu, Junrong
    Zhou, Wangyan
    Zhang, Yidan
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [7] Development of classification scheme applicable to multi-source remote sensing data
    Jeong, JJ
    Chon, JC
    Kim, KO
    Yang, YK
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IX, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING II, 2002, : 119 - 124
  • [8] Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data
    Jiang, Hou
    Yao, Ling
    Lu, Ning
    Qin, Jun
    Liu, Tang
    Liu, Yujun
    Zhou, Chenghu
    ENERGY AND AI, 2022, 10
  • [9] Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network
    Zhao W.
    Li S.
    Li A.
    Zhang B.
    Chen J.
    Li, Shanshan (lishanshan@aircas.ac.cn), 1600, (25): : 1489 - 1502
  • [10] A Method to Identify Dacrydium pierrei Hickel Using Unmanned Aerial Vehicle Multi-source Remote Sensing Data in a Chinese Tropical Rainforest
    Peng, Xi
    Liu, Haodong
    Chen, Yongfu
    Chen, Qiao
    Wang, Juan
    Li, Huayu
    Zhao, Anjiu
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (01) : 25 - 35