Stability of Pexiderized quadratic functional equation on a set of measure zero

被引:1
作者
EL-Fassi, Iz-iddine
Chahbi, Abdellatif
Kabbaj, Samir
Park, Choonki
机构
[1] Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra
[2] Research Institute for Natural Sciences, Hanyang University, Seoul
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 06期
关键词
Pexider quadratic functional equation; Hyers-Ulam stability; first category Lebesgue measure; Baire category theorem; SPACES; ULAM;
D O I
10.22436/jnsa.009.06.93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be the set of real numbers and Y a Banach space. We prove the Hyers-Ulam stability theorem when f, h : R -> Y satisfy the following Pexider quadratic inequality vertical bar vertical bar f (x + y) + f (x - y) - 2f (x) - 2h(y)vertical bar vertical bar <= epsilon, in a set Omega subset of R-2 of Lebesgue measure m(Omega) = 0. (C) 2016 All rights reserved.
引用
收藏
页码:4554 / 4562
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 2007, J MATH INEQUAL, DOI DOI 10.7153/JMI-01-43
[2]  
[Anonymous], 1980, Measure and category, A survey of the analogies between topological and measure spaces, volume 2 of Graduate Texts in Mathematics
[3]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[4]   P-means and the Solution of a Functional Equation Involving Cauchy Differences [J].
Berrone, Lucio R. .
RESULTS IN MATHEMATICS, 2015, 68 (3-4) :375-393
[5]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[6]  
Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
[7]   Stability of a conditional Cauchy equation on a set of measure zero [J].
Chung, Jae-Young .
AEQUATIONES MATHEMATICAE, 2014, 87 (03) :391-400
[8]   Quadratic functional equations in a set of Lebesgue measure zero [J].
Chung, Jaeyoung ;
Rassias, John Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) :1065-1075
[9]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[10]   A COMMON GENERALIZATION OF FUNCTIONAL-EQUATIONS CHARACTERIZING NORMED AND QUASI-INNER-PRODUCT SPACES [J].
EBANKS, BR ;
KANNAPPAN, P ;
SAHOO, PK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (03) :321-327