Abelian extensions in dynamical Galois theory

被引:6
作者
Andrews, Jesse [1 ]
Petsche, Clayton [2 ]
机构
[1] Washington Coll, Dept Math & Comp Sci, Chestertown, MD 21620 USA
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
关键词
arithmetic dynamics; dynamical Galois theory; arboreal representations; Weil height; small points; Arakelov-Zhang pairing; EQUIDISTRIBUTION; POINTS; HEIGHT;
D O I
10.2140/ant.2020.14.1981
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a conjectural characterization of when the dynamical Galois group associated to a polynomial is abelian, and we prove our conjecture in several cases, including the stable quadratic case over Q. In the postcritically infinite case, the proof uses algebraic techniques, including a result concerning ramification in towers of cyclic p-extensions. In the postcritically finite case, the proof uses the theory of heights together with results of Amoroso and Zannier and Amoroso and Dvornicich, as well as properties of the Arakelov-Zhang pairing.
引用
收藏
页码:1981 / 1999
页数:19
相关论文
共 33 条
[1]  
Ahmad F., 2019, PREPRINT
[2]  
AMOROSO F, 2000, J NUMBER THEORY, V0080, P00260
[3]  
Amoroso F., 2000, ANN SCUOLA NORM SUP, V29, P711
[4]  
BAKER MH, 2006, ANN I FOURIER GRENOB, V0056, P00625
[5]  
Bombieri E., 2006, NEW MATH MONOGR, V4
[6]  
Boston N., 2000, PREPRINT
[7]  
BOSTON N, 2009, PURE APPL MATH Q, V0005, P00213
[8]  
BOSTON N, 2007, GEOM DEDICATA, V0124, P00027, DOI DOI 10.1007/S10711-006-9113-9
[9]  
BRIDY A, 2017, MATH RES LETT, V0024, P01633
[10]  
Cassels J. W. S., 1967, ALGEBRAIC NUMBER THE