A 10-b Ternary SAR ADC With Quantization Time Information Utilization

被引:46
作者
Guerber, Jon [1 ]
Venkatram, Hariprasath [1 ]
Gande, Manideep [1 ]
Waters, Allen [1 ]
Moon, Un-Ku [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Residue shaping; successive approximation analog-to-digital converter (SAR ADC); SAR ADC redundancy; SAR switching; ternary SAR (TSAR); time quantization; CMOS;
D O I
10.1109/JSSC.2012.2211696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The design of a ternary successive approximation (TSAR) analog-to-digital converter (ADC) with quantization time information utilization is proposed. The TSAR examines the transient information of a typical dynamic SAR voltage comparator to provide accuracy, speed, and power benefits. Full half-bit redundancy is shown, allowing for residue shaping which provides an additional 6 dB of signal-to-quantization-noise ratio (SQNR). Synchronous quantizer speed enhancements allow for a shorter worst case conversion time. An increased monotonicity switching algorithm, stage skipping due to reference grouping, and SAR logic modifications minimize overall dynamic energy. The architecture has been shown to reduce capacitor array switching power consumption and digital-to-analog converter (DAC) driver power by about 60% in a mismatch limited SAR, reduce comparator activity by about 20%, and require only 8.03 average comparisons and 6.53 average DAC movements for a 10-b ADC output word. A prototype is fabricated in 0.13-mu m CMOS employing on-chip statistical time reference calibration, supply variability from 0.8 to 1.2 V, and small input signal power scaling. The chip consumes 84 mu W at 8 MHz with an effective number of bits of 9.3 for a figure of merit of 16.9 fJ/C-S for the 10-b prototype and 10.0 fJ/C-S for a 12-b enhanced prototype chip.
引用
收藏
页码:2604 / 2613
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2008, PROC IEEE INT SOLID
[2]  
Boyacigiller Z., 1981, Solid-State Circuits Conference. Digest of Technical Papers. 1981 IEEE International, VXXIV, P62
[3]   A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS [J].
Chen, Shuo-Wei Michael ;
Brodersen, Robert W. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (12) :2669-2680
[4]   A 550-μW 10-b 40-MS/s SAR ADC With Multistep Addition-Only Digital Error Correction [J].
Cho, Sang-Hyun ;
Lee, Chang-Kyo ;
Kwon, Jong-Kee ;
Ryu, Seung-Tak .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (08) :1881-1892
[5]  
Chun-Cheng Liu, 2010, 2010 IEEE International Solid-State Circuits Conference (ISSCC), P386, DOI 10.1109/ISSCC.2010.5433970
[6]  
Dastjerdi-Mottaghi M., 2006, P INT C MICR DEC
[7]   Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping [J].
Dessouky, M ;
Kaiser, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2001, 36 (03) :349-355
[8]   A CMOS 13-B CYCLIC RSD A/D CONVERTER [J].
GINETTI, B ;
JESPERS, PGA ;
VANDEMEULEBROECKE, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1992, 27 (07) :957-965
[9]   500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC [J].
Ginsburg, Brian P. ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (04) :739-747
[10]  
Guerber J., 2011, P IEEE AS SOL STAT C, P63