A NEW VISUAL DATA MINING TOOL FOR GVSIG GIS

被引:0
作者
Vazquez-Rodriguez, Romel [1 ]
Perez-Risquet, Carlos [1 ]
Gonzalez-Herrera, Inti Y. [1 ]
Fajardo-Moya, Alexis [1 ]
Carlos Torres-Cantero, Juan [2 ]
机构
[1] Cent Univ Las Villas, Ctr Studies Informat, Santa Clara, Cuba
[2] Univ Granada, Dept Languages & Informat Syst, Granada, Spain
来源
KDIR 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL | 2010年
关键词
Visual data mining; Scientific visualization; Information visualization; GIS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The integration of scientific visualization (ScVis) techniques into geographic information systems (GIS) is an innovative alternative for the visual analysis of scientific data. Providing GIS with such tools improves the analysis and understanding of datasets with very low spatial density and allows to find correlations between variables in time and space. This paper presents a new visual data mining tool for the GIS gvSIG. This tool is implemented as a gvSIG module and contains several ScVis techniques for multiparameter data with a wide range of possibilities for interaction with the data. The developed module is a powerful visual data mining and data visualization tool to obtain knowledge from multiple datasets in time and space. A real case study with meteorological data from Villa Clara province (Cuba) is presented, where the implemented visualization techniques were used to analyze the available datasets. Although it is tested with meteorological data, the developed module is general and can be used in multiple application fields.
引用
收藏
页码:428 / 431
页数:4
相关论文
共 50 条
  • [41] Methods for visual mining of genomic and proteomic data atlases
    John Boyle
    Richard Kreisberg
    Ryan Bressler
    Sarah Killcoyne
    BMC Bioinformatics, 13
  • [42] Traffic predictions with visual data mining and artificial intelligence
    Schneider, W.
    Toplak, W.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2008, 125 (06): : 232 - 237
  • [43] Dengue Risk Mapping from Geospatial Data Using GIS and Data Mining Techniques
    Hnusuwan, Benjawan
    Kajornkasirat, Siriwan
    Puttinaovarat, Supattra
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (11) : 57 - 79
  • [44] VizAssist: an interactive user assistant for visual data mining
    Fatma Bouali
    Abdelheq Guettala
    Gilles Venturini
    The Visual Computer, 2016, 32 : 1447 - 1463
  • [45] Visual data mining based on differential topology: a survey
    Saeki, Osamu
    Takahashi, Shigeo
    PACIFIC JOURNAL OF MATHEMATICS FOR INDUSTRY, 2014, 6
  • [46] The application of a visual data mining framework to determine soil, climate and land use relationships
    Vagh, Y.
    ISEEC, 2012, 32 : 299 - 306
  • [47] Study on species invasion warning modeling using GIS and data mining
    Chen, Hao
    Chen, Lijun
    Li, Jiatian
    Albright, Thomas P.
    Guo, Qinfeng
    Ma, Li
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [48] Research on Integration of Spatial Data Mining and GIS Based on Component Technology
    Yang, Zhen
    Ju, Feng
    Shao, Bin
    ADVANCES IN COMPUTATIONAL ENVIRONMENT SCIENCE, 2012, 142 : 161 - +
  • [49] GIS and Urban Mining
    Zhu, Xuan
    RESOURCES-BASEL, 2014, 3 (01): : 235 - 247
  • [50] VISUAL DATA MINING FOR FEATURE SPACE EXPLORATION USING IN-SITU DATA
    Espinoza-Molina, Daniela
    Alonso, Kevin
    Datcu, Mihai
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5905 - 5908