Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus

被引:14
作者
Bergamasco, A. P. [1 ]
Dattori da Silva, P. L. [1 ]
Gonzalez, R. B. [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Parana, Dept Matemat, Caixa Postal 19081, BR-81531990 Curitiba, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gevrey solvability; Gevrey hypoellipticity; Vector fields; Periodic solutions; Fourier series;
D O I
10.1016/j.jde.2017.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = partial derivative/partial derivative t + Sigma(N)(j=1) (a(j)+ib(j)) (t) partial derivative/partial derivative x(j) be a vector field defined on the torus TN+1 similar or equal to RN+1 /2 Pi Z(N+1,) where a(j),b(j) are real-valued functions and belonging to the Gevrey class G(s)(T-1), s > 1, for j= 1,..., N. We present a complete characterization for the s-global solvability and s-global hypoellipticity of L. Our results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3500 / 3526
页数:27
相关论文
共 50 条
  • [21] Global hypoellipticity for a class of periodic Cauchy operators
    Silva, Fernando de Avila
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [22] ON THE GLOBAL SOLVABILITY FOR OVERDETERMINED SYSTEMS
    Bergamasco, Adalberto P.
    Kirilov, Alexandre
    Leite Nunes, Wagner Vieira
    Zani, Sergio Luis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) : 4533 - 4549
  • [23] Global hypoellipticity for strongly invariant operators
    Kirilov, Alexandre
    de Moraes, Wagner A. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (10)
  • [24] Perturbations by lower order terms do not destroy the global hypoellipticity of certain systems of pseudodifferential operators defined on torus
    Ferra, Igor Ambo
    Petronilho, Gerson
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (07) : 2780 - 2794
  • [25] HYPOELLIPTICITY AND NONHYPOELLIPTICITY FOR SUMS OF SQUARES OF COMPLEX VECTOR FIELDS
    Bove, Antonio
    Mughetti, Marco
    Tartakoff, David S.
    ANALYSIS & PDE, 2013, 6 (02): : 371 - 445
  • [26] Closedness of the range for vector fields on the torus
    Bergamasco, AP
    Petronilho, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) : 132 - 139
  • [27] Foliations, solvability, and global injectivity
    Braun, Francisco
    dos Santos Filho, Jose Ruidival
    Teixeira, Marco Antonio
    ARCHIV DER MATHEMATIK, 2022, 119 (06) : 649 - 665
  • [28] On the global solvability of involutive systems
    Bergamasco, Adalberto P.
    de Medeira, Cleber
    Kirilov, Alexandre
    Zani, Sergio L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) : 527 - 549
  • [29] ON THE SOLVABILITY OF VECTOR FIELDS WITH REAL LINEAR COEFFICIENTS
    Treves, Francois
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4209 - 4218
  • [30] ON THE LOCAL SOLVABILITY OF VECTOR FIELDS WITH CRITICAL POINTS
    Treves, Francois
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2011, 10 (03) : 785 - 808