Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus

被引:14
作者
Bergamasco, A. P. [1 ]
Dattori da Silva, P. L. [1 ]
Gonzalez, R. B. [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Parana, Dept Matemat, Caixa Postal 19081, BR-81531990 Curitiba, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gevrey solvability; Gevrey hypoellipticity; Vector fields; Periodic solutions; Fourier series;
D O I
10.1016/j.jde.2017.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = partial derivative/partial derivative t + Sigma(N)(j=1) (a(j)+ib(j)) (t) partial derivative/partial derivative x(j) be a vector field defined on the torus TN+1 similar or equal to RN+1 /2 Pi Z(N+1,) where a(j),b(j) are real-valued functions and belonging to the Gevrey class G(s)(T-1), s > 1, for j= 1,..., N. We present a complete characterization for the s-global solvability and s-global hypoellipticity of L. Our results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3500 / 3526
页数:27
相关论文
共 50 条
  • [1] Global Gevrey hypoellipticity on the torus for a class of systems of complex vector fields
    Arias Junior, Alexandre
    Kirilov, Alexandre
    de Medeira, Cleber
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 712 - 732
  • [2] Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus
    Adalberto P. Bergamasco
    Paulo L. Dattori da Silva
    Rafael B. Gonzalez
    Alexandre Kirilov
    Journal of Pseudo-Differential Operators and Applications, 2015, 6 : 341 - 360
  • [3] Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus
    Bergamasco, Adalberto P.
    Dattori da Silva, Paulo L.
    Gonzalez, Rafael B.
    Kirilov, Alexandre
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2015, 6 (03) : 341 - 360
  • [4] Global hypoellipticity and global solvability for vector fields on compact Lie groups
    Kirilov, Alexandre
    de Moraes, Wagner A. A.
    Ruzhansky, Michael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (02)
  • [5] On global analytic and Gevrey hypoellipticity on the torus and the Metivier inequality
    Chinni, G.
    Cordaro, P. D.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (01) : 121 - 141
  • [6] Global solvability for a special class of vector fields on the torus
    Bergamasco, Adalberto P.
    Da Silva, Paulo L. Dattori
    Recent Progress on Some Problems in Several Complex Variables and Partial Differential Equations, 2006, 400 : 11 - 20
  • [7] Global analytic, Gevrey and C8 hypoellipticity on the 3-torus
    Himonas, A. Alexandrou
    Petronilho, Gerson
    Carvalho dos Santos, L. A.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 265 - 282
  • [8] On the solvability and hypoellipticity of complex vector fields
    Treves, Francois
    GEOMETRIC ANALYSIS OF SEVERAL COMPLEX VARIABLES AND RELATED TOPICS, 2011, 550 : 173 - 196
  • [9] NORMALIZATION, OPTIMAL REGULARITY, AND SOLVABILITY IN GEVREY CLASSES OF VECTOR FIELDS NEAR TRAPPED ORBITS
    Hoepfner, Gustavo
    Jahnke, Max Reinhold
    Novelli, Vinicius
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1179 - 1193
  • [10] Global hypoellipticity and simultaneous approximability in ultradifferentiable classes
    Barostichi, R. F.
    Ferra, I. A.
    Petronilho, G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 104 - 124