Artificial neural networks as a classification method in the behavioural sciences

被引:72
作者
Reby, D
Lek, S
Dimopoulos, I
Joachim, J
Lauga, J
Aulagnier, S
机构
[1] UNIV TOULOUSE 3, CESAC, CNRS, UMR 5576, F-31062 TOULOUSE, FRANCE
[2] UNIV TOULOUSE 3, LET, CNRS, UMR 5552, F-31062 TOULOUSE, FRANCE
关键词
mammal; deer; vocalization; neural network; classification; modelling;
D O I
10.1016/S0376-6357(96)00766-8
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The classification and recognition of individual characteristics and behaviours constitute a preliminary step and is an important objective in the behavioural sciences. Current statistical methods do not always give satisfactory results. To improve performance in this area, we present a methodology based on one of the principles of artificial neural networks: the backpropagation gradient. After summarizing the theoretical construction of the model, we describe how to parameterize a neural network using the example of the individual recognition of vocalizations of four fallow deer (Dama dama). With 100% recognition and 90% prediction success, the results are very promising. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 25 条
  • [1] ANDREASSEN H, 1990, J ACQ IMMUN DEF SYND, V3, P615
  • [2] Belliustin N. S., 1991, Neurocomputing, V3, P231, DOI 10.1016/0925-2312(91)90005-V
  • [3] THE QUANTITATIVE ETHOLOGY OF THE ZEBRA FINCH - A STUDY IN COMPARATIVE PSYCHOMETRICS
    FIGUEREDO, AJ
    ROSS, DM
    PETRINOVICH, L
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 1992, 27 (03) : 435 - 458
  • [4] FUKUSHIMA K, 1990, ADVANCED NEURAL COMPUTERS, P263
  • [5] GALLANT SI, 1993, NEURAL NETWORK LEARN, P365
  • [6] GEMELLO R, 1991, P INT NEUR NETW C PA, V1, P35
  • [7] IWATA A, 1990, P INT NEUR NETW C PA, V1, P83
  • [8] Kosko B., 1992, NEURAL NETWORKS SIGN, P399
  • [9] LEFEBVRE T, 1990, P INT NEUR NETW C PA, V1, P119
  • [10] Application of neural networks to modelling nonlinear relationships in ecology
    Lek, S
    Delacoste, M
    Baran, P
    Dimopoulos, I
    Lauga, J
    Aulagnier, S
    [J]. ECOLOGICAL MODELLING, 1996, 90 (01) : 39 - 52