Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models

被引:1
作者
Ladd, Alexander [1 ]
Kim, Kyung Geun [1 ]
Balewski, Jan [2 ]
Bouchard, Kristofer [3 ,4 ,5 ,6 ]
Ben-Shalom, Roy [7 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Redwood Ctr Theoret Neurosci, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Sci Data Div, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[7] Univ Calif Davis, Neurol Dept, MIND Inst, Sacramento, CA 95817 USA
关键词
biophysical neuron model; high performance computing; evolutionary algorithms; non-convex optimization; strong scaling; weak scaling; electrophysiology; PERFORMANCE; NEUROSCIENCE; INTEGRATION; SIMULATION; SELECTION;
D O I
10.3389/fninf.2022.882552
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single neuron models are fundamental for computational modeling of the brain's neuronal networks, and understanding how ion channel dynamics mediate neural function. A challenge in defining such models is determining biophysically realistic channel distributions. Here, we present an efficient, highly parallel evolutionary algorithm for developing such models, named NeuroGPU-EA. NeuroGPU-EA uses CPUs and GPUs concurrently to simulate and evaluate neuron membrane potentials with respect to multiple stimuli. We demonstrate a logarithmic cost for scaling the stimuli used in the fitting procedure. NeuroGPU-EA outperforms the typically used CPU based evolutionary algorithm by a factor of 10 on a series of scaling benchmarks. We report observed performance bottlenecks and propose mitigation strategies. Finally, we also discuss the potential of this method for efficient simulation and evaluation of electrophysiological waveforms.
引用
收藏
页数:15
相关论文
共 77 条
[1]   Arbor - a morphologically-detailed neural network simulation library for contemporary high-performance computing architectures [J].
Akar, Nora Abi ;
Cumming, Ben ;
Karakasis, Vasileios ;
Kuesters, Anne ;
Klijn, Wouter ;
Peyser, Alexander ;
Yates, Stuart .
2019 27TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 2019, :274-282
[2]   Is realistic neuronal modeling realistic? [J].
Almog, Mara ;
Korngreen, Alon .
JOURNAL OF NEUROPHYSIOLOGY, 2016, 116 (05) :2180-2209
[3]  
Amdahl Gene M, 1967, P APR 18 20 1967 SPR, P483, DOI DOI 10.1145/1465482.1465560
[4]  
[Anonymous], 1998, The theory and practice of concurrency
[5]   Evolution strategies – A comprehensive introduction [J].
Hans-Georg Beyer ;
Hans-Paul Schwefel .
Natural Computing, 2002, 1 (1) :3-52
[6]  
Bailey D. H., 2010, Performance Tuning of Scientific Applications, DOI [10.1201/b10509, DOI 10.1201/B10509]
[7]   Scaling of Union of Intersections for Inference of Granger Causal Networks from Observational Data [J].
Balasubramanian, Mahesh ;
Ruiz, Trevor D. ;
Cook, Brandon ;
Prabhat ;
Bhattacharyya, Sharmodeep ;
Shrivastava, Aviral ;
Bouchard, Kristofer E. .
2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, :264-273
[8]  
Ben-Shalom R, 2019, bioRxiv, DOI [10.1101/727560, 10.1101/727560, DOI 10.1101/727560]
[9]   NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs [J].
Ben-Shalom, Roy ;
Ladd, Alexander ;
Artherya, Nikhil S. ;
Cross, Christopher ;
Kim, Kyung Geun ;
Sanghevi, Hersh ;
Korngreen, Alon ;
Bouchard, Kristofer E. ;
Bender, Kevin J. .
JOURNAL OF NEUROSCIENCE METHODS, 2022, 366
[10]   Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures [J].
Ben-Shalom, Roy ;
Keeshen, Caroline M. ;
Berrios, Kiara N. ;
An, Joon Y. ;
Sanders, Stephan J. ;
Bender, Kevin J. .
BIOLOGICAL PSYCHIATRY, 2017, 82 (03) :224-232