DECOMPOSITION FACTORS OF D-MODULES ON HYPERPLANE CONFIGURATIONS IN GENERAL POSITION

被引:4
作者
Abebaw, Tilahun [1 ]
Bogvad, Rikard [2 ]
机构
[1] Univ Addis Ababa, Dept Math, Addis Ababa, Ethiopia
[2] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
关键词
Hyperplane arrangements; D-module theory; ARRANGEMENTS;
D O I
10.1090/S0002-9939-2011-11127-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha(1), ... , alpha(m) be linear functions on C-n and X = C-n \ V(alpha), where alpha = Pi(m)(i=1) alpha(i) and V(alpha) = {p is an element of C-n : alpha(p) = 0}. The coordinate ring O-X = C[x](alpha) of X is a holonomic A(n)-module, where A(n) is the n-th Weyl algebra, and since holonomic A(n)-modules have finite length, O-X has finite length. We consider a "twisted" variant of this A(n)-module which is also holonomic. Define M-alpha(beta) to be the free rank 1 C[x](alpha)-module on the generator alpha(beta) (thought of as a multivalued function), where alpha(beta) = alpha(beta 1)(1) ... alpha(beta m)(m) and the multi-index beta = (beta(1), ... , beta(m)) is an element of C-m. It is straightforward to describe the decomposition factors of M-alpha(beta), when the linear functions alpha(1), ... , alpha(m) define a normal crossing hyperplane configuration, and we use this to give a sufficient criterion on beta for the irreducibility of M-alpha(beta), in terms of numerical data for a resolution of the singularities of V(alpha).
引用
收藏
页码:2699 / 2711
页数:13
相关论文
共 18 条
[1]   Decomposition of D-modules over a hyperplane arrangement in the plane [J].
Abebaw, Tilahun ;
Bogvad, Rikard .
ARKIV FOR MATEMATIK, 2010, 48 (02) :211-229
[2]  
Bjork J.-E., 1993, ANAL D MODULES APPL
[3]  
BJORK JE, 1979, RINGS DIFFERENTIAL O
[4]  
Concini CD, 2011, UNIVERSITEXT, P1
[5]  
Coutinho S, 1995, A Primer of Algebraic D-Modules
[6]   Hyperplane arrangements and box splines [J].
De Concini, C. ;
Procesi, C. ;
Bjorner, A. .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :201-225
[7]   A COMPACTIFICATION OF CONFIGURATION-SPACES [J].
FULTON, W ;
MACPHERSON, R .
ANNALS OF MATHEMATICS, 1994, 139 (01) :183-225
[8]  
Harris J., 1995, Algebraic geometry
[9]  
Hotta R., 2008, D MODULES PERVERSE S
[10]  
Kashiwara M., 1998, PROGR MATH, V160, P267