Quaternion Algebras and Generalized Fibonacci-Lucas Quaternions

被引:18
作者
Flaut, Cristina [1 ]
Savin, Diana [1 ]
机构
[1] Ovidius Univ, Fac Math & Comp Sci, Constanta 900527, Romania
关键词
Generalized quaternion algebra; Fibonacci numbers; Lucas numbers;
D O I
10.1007/s00006-015-0542-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the generalized Fibonacci-Lucas quaternions and we prove that the set of these elements is an order-in the sense of ring theory-of a quaternion algebra. Moreover, we investigate some properties of these elements.
引用
收藏
页码:853 / 862
页数:10
相关论文
共 10 条
[1]   Fibonacci Generalized Quaternions [J].
Akyigit, Mahmut ;
Kosal, Hidayet Huda ;
Tosun, Murat .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) :631-641
[2]  
Flaut C., 2001, An. St. Univ. Ovidius Constanta, V9, P45
[3]  
Flaut C., 2013, J MATH SCI ADV APPL, V20, P37
[4]  
Flaut C, 2014, MATH REP, V16, P443
[5]   On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions [J].
Flaut, Cristina ;
Shpakivskyi, Vitalii .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) :673-688
[6]   A GENERALIZED FIBONACCI SEQUENCE [J].
HORADAM, AF .
AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (05) :455-&
[7]   COMPLEX FIBONACCI NUMBERS AND FIBONACCI QUATERNIONS [J].
HORADAM, AF .
AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (03) :289-&
[8]  
Lam TY, 2004, AM MATH SOC
[9]   About some split central simple algebras [J].
Savin, Diana .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (01) :263-272
[10]  
Voight John., The arithmetic of quaternion algebras