Riemann-Cartan Geometry of Nonlinear Dislocation Mechanics

被引:120
|
作者
Yavari, Arash [1 ]
Goriely, Alain
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS DISTRIBUTIONS; SIMPLE BODIES; DEFECTS; TORSION; STRAIN; PLASTICITY; EXISTENCE; STRESS; SOLIDS; MODEL;
D O I
10.1007/s00205-012-0500-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenbock manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan's moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance.
引用
收藏
页码:59 / 118
页数:60
相关论文
共 50 条
  • [31] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10
  • [32] Riemann-Cartan Gravity with Dynamical Signature
    Bondarenko, S.
    Zubkov, M. A.
    JETP LETTERS, 2022, 116 (01) : 54 - 60
  • [33] PROPERTIES OF A SPIN FLUID IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    PLATANIA, G
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 95 (08) : 425 - 428
  • [34] Evaluation of the heat kernel in Riemann-Cartan space
    Yajima, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) : 2423 - 2435
  • [35] Comment on 'Braneworld remarks in Riemann-Cartan manifolds'
    Khakshournia, S.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (17)
  • [36] Riemann-Cartan space in O-theory
    Dorofeev, V. Yu
    GRAVITATION & COSMOLOGY, 2012, 18 (02): : 100 - 103
  • [37] Matter with dilatation charge in the Riemann-Cartan space
    Baburova, O. V.
    Kostkin, R. S.
    RUSSIAN PHYSICS JOURNAL, 2009, 52 (05) : 487 - 493
  • [38] SPACETIME STRUCTURE EXPLORED BY ELEMENTARY-PARTICLES - MICROSCOPIC ORIGIN FOR RIEMANN-CARTAN GEOMETRY
    HAYASHI, K
    SHIRAFUJI, T
    PROGRESS OF THEORETICAL PHYSICS, 1977, 57 (01): : 302 - 317
  • [39] YANG-MILLS CONFIGURATIONS FROM 3D RIEMANN-CARTAN GEOMETRY
    MIELKE, EW
    OBUKHOV, YN
    HEHL, FW
    PHYSICS LETTERS A, 1994, 192 (2-4) : 153 - 162
  • [40] Massless DKP fields in Riemann-Cartan spacetimes
    Casana, R
    Fainberg, VY
    Lunardi, JT
    Pimentel, BM
    Teixeira, RG
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (11) : 2457 - 2465