Riemann-Cartan Geometry of Nonlinear Dislocation Mechanics

被引:120
|
作者
Yavari, Arash [1 ]
Goriely, Alain
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS DISTRIBUTIONS; SIMPLE BODIES; DEFECTS; TORSION; STRAIN; PLASTICITY; EXISTENCE; STRESS; SOLIDS; MODEL;
D O I
10.1007/s00205-012-0500-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenbock manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan's moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance.
引用
收藏
页码:59 / 118
页数:60
相关论文
共 50 条
  • [21] Spinning branes in Riemann-Cartan spacetime
    Vasilic, Milovan
    Vojinovic, Marko
    PHYSICAL REVIEW D, 2008, 78 (10):
  • [22] ON THE MAXWELL EQUATIONS IN A RIEMANN-CARTAN SPACE
    DESABBATA, V
    GASPERINI, M
    PHYSICS LETTERS A, 1980, 77 (05) : 300 - 302
  • [23] GEOMETRIC OPTICS IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 98 (8-9) : 411 - 413
  • [24] Groups of automorphisms of Riemann-Cartan structures
    Pan’zhenskii V.I.
    Journal of Mathematical Sciences, 2015, 207 (4) : 538 - 543
  • [25] COSMIC STRINGS IN RIEMANN-CARTAN SPACETIMES
    BAKER, WM
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (05) : 717 - 730
  • [26] Braneworld remarks in Riemann-Cartan manifolds
    da Silva, J. M. Hoff
    da Rocha, R.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (05)
  • [27] Test membranes in Riemann-Cartan spacetimes
    Vasilic, Milovan
    Vojinovic, Marko
    PHYSICAL REVIEW D, 2010, 81 (02):
  • [28] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [29] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [30] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468