Riemann-Cartan Geometry of Nonlinear Dislocation Mechanics

被引:120
|
作者
Yavari, Arash [1 ]
Goriely, Alain
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS DISTRIBUTIONS; SIMPLE BODIES; DEFECTS; TORSION; STRAIN; PLASTICITY; EXISTENCE; STRESS; SOLIDS; MODEL;
D O I
10.1007/s00205-012-0500-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenbock manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan's moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance.
引用
收藏
页码:59 / 118
页数:60
相关论文
共 50 条
  • [1] Riemann-Cartan geometry of nonlinear disclination mechanics
    Yavari, Arash
    Goriely, Alain
    MATHEMATICS AND MECHANICS OF SOLIDS, 2013, 18 (01) : 91 - 102
  • [2] Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics
    Arash Yavari
    Alain Goriely
    Archive for Rational Mechanics and Analysis, 2012, 205 : 59 - 118
  • [3] AN IDENTITY IN RIEMANN-CARTAN GEOMETRY
    NIEH, HT
    YAN, ML
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (03) : 373 - 374
  • [4] Torsion Structure in Riemann-Cartan Manifold and Dislocation
    Xiguo Lee
    Marcello Baldo
    Yishi Duan
    General Relativity and Gravitation, 2002, 34 : 1569 - 1577
  • [5] Torsion structure in Riemann-Cartan manifold and dislocation
    Lee, X
    Baldo, M
    Duan, YS
    GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (10) : 1569 - 1577
  • [6] String background fields and the Riemann-Cartan geometry
    Vasilic, Milovan
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (07)
  • [7] Riemann-Cartan space-time in stringy geometry
    Sazdovic, B
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 94 - 108
  • [8] BOSONIZATION IN A TWO-DIMENSIONAL RIEMANN-CARTAN GEOMETRY
    DENARDO, G
    SPALLUCCI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1987, 98 (01): : 25 - 36
  • [9] SPECTRAL GEOMETRY OF THE RIEMANN-CARTAN SPACE-TIME
    OBUKHOV, YN
    NUCLEAR PHYSICS B, 1983, 212 (02) : 237 - 254
  • [10] RIEMANN-CARTAN GEOMETRY OF TRIVIALIZABLE GAUGE-FIELDS
    MATTES, M
    SORG, M
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1989, 44 (03): : 222 - 238