Redox-Responsive Amphipathic Dextran Nanomicelles for Solid Tumor Therapy

被引:47
作者
Song, Yanyan [1 ,2 ,3 ]
Lou, Bo [1 ,2 ,3 ]
Cheng, Jian [1 ,2 ]
Zhao, Peng [1 ,2 ]
Lin, Chao [1 ,2 ]
Wen, Xuejun [1 ,2 ,4 ]
机构
[1] Tongji Univ, Sch Med, Shanghai East Hosp, Shanghai 200092, Peoples R China
[2] Tongji Univ, Sch Med, Inst Biomed Engn & Nanosci, Shanghai 200092, Peoples R China
[3] Tongji Univ, Sch Life Sci & Technol, Shanghai 200092, Peoples R China
[4] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA
关键词
Redox-Responsive; Dextran; Nanoparticles; Micelles; Drug Delivery; Solid Tumor; OVERCOMING MULTIDRUG-RESISTANCE; DRUG-DELIVERY; GENE DELIVERY; TARGETED DELIVERY; ANTICANCER DRUG; BLOCK-COPOLYMER; CANCER-THERAPY; MICELLES; DOXORUBICIN; NANOPARTICLES;
D O I
10.1166/jbn.2016.2314
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A disulfide bond containing deoxycholic acid-grafted dextran (Dex-SSDCA) was successfully prepared for drug delivery. The Dex-SSDCA polymers can self-assemble into nanomicelles at concentrations below 56 g/mL and encapsulate doxorubicin (DOX) effectively. When exposed to 10 mM Dithiothreitol (DTT), the nanomicelles disassembled rapidly and released DOX immediately. The DOX-loaded Dex-SSDCA nanomicelles were able to reverse the drug resistance of MCF-7/Adr cells and inhibit their growth in vitro. Moreover, DOX-loaded Dex-SSDCA nanomicelles could significantly suppress the growth of subcutaneous SKOV-3 ovarian cancer in vivo, exerting stronger efficiency on inhibiting tumor angiogenesis and proliferation while aggravating apoptosis of tumor cells, in comparison with the negative control and free DOX. The in vivo toxicity evaluation demonstrated that the Dex-SSDCA micelles reduced DOX-induced side effects. This redox-responsive amphipathic dextran is able to enhance the antitumor efficiency and reduce the toxicity of doxorubicin, thus has a potential as a drug carrier for cancer therapy.
引用
收藏
页码:2083 / 2096
页数:14
相关论文
共 32 条
  • [1] Association and Phase Behavior of Cholic Acid-Modified Dextran and Phosphatidylcholine Liposomes
    Bai, Guangyue
    Nichifor, Marieta
    Bastos, Margarida
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (06): : 932 - 936
  • [2] Polysaccharide-Modified Synthetic Polymeric Biomaterials
    Baldwin, Aaron D.
    Kiick, Kristi L.
    [J]. BIOPOLYMERS, 2010, 94 (01) : 128 - 140
  • [3] DEMONSTRATION OF NUCLEAR COMPARTMENTALIZATION OF GLUTATHIONE IN HEPATOCYTES
    BELLOMO, G
    VAIRETTI, M
    STIVALA, L
    MIRABELLI, F
    RICHELMI, P
    ORRENIUS, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (10) : 4412 - 4416
  • [4] Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy
    Bisht, Savita
    Maitra, Amarnath
    [J]. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2009, 1 (04) : 415 - 425
  • [5] Nanomedicine in cancer therapy: Innovative trends and prospects
    Blanco, Elvin
    Hsiao, Angela
    Mann, Aman P.
    Landry, Matthew G.
    Meric-Bernstam, Funda
    Ferrari, Mauro
    [J]. CANCER SCIENCE, 2011, 102 (07) : 1247 - 1252
  • [6] Effect of Tail Architecture on Self-Assembly of Amphiphiles for Polymeric Micelles
    Cheng, Lisheng
    Cao, Dapeng
    [J]. LANGMUIR, 2009, 25 (05) : 2749 - 2756
  • [7] Nanoparticle therapeutics: an emerging treatment modality for cancer
    Davis, Mark E.
    Chen, Zhuo
    Shin, Dong M.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) : 771 - 782
  • [8] Synthesis and Antitumor Activity of Stearate-g-dextran Micelles for Intracellular Doxorubicin Delivery
    Du, Yong-Zhong
    Weng, Qi
    Yuan, Hong
    Hu, Fu-Qiang
    [J]. ACS NANO, 2010, 4 (11) : 6894 - 6902
  • [9] Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules
    Duong, Hien T. T.
    Hughes, Felicity
    Sagnella, Sharon
    Kavallaris, Maria
    Macmillan, Alexander
    Whan, Renee
    Hook, James
    Davis, Thomas P.
    Boyer, Cyrille
    [J]. MOLECULAR PHARMACEUTICS, 2012, 9 (11) : 3046 - 3061
  • [10] INCORPORATION OF AN EDTA-METAL COMPLEX AT A RATIONALLY SELECTED SITE WITHIN A PROTEIN - APPLICATION TO EDTA-IRON DNA AFFINITY CLEAVING WITH CATABOLITE GENE ACTIVATOR PROTEIN (CAP) AND CRO
    EBRIGHT, YW
    CHEN, Y
    PENDERGRAST, PS
    EBRIGHT, RH
    [J]. BIOCHEMISTRY, 1992, 31 (44) : 10664 - 10670