Improvements to a global ocean data assimilation system through the incorporation of Aquarius surface salinity data

被引:26
作者
Toyoda, Takahiro [1 ]
Fujii, Yosuke [1 ]
Kuragano, Tsurane [1 ]
Matthews, John P. [2 ]
Abe, Hiroto [3 ]
Ebuchi, Naoto [3 ]
Usui, Norihisa [1 ]
Ogawa, Koji [4 ]
Kamachi, Masafumi [1 ]
机构
[1] Japan Meteorol Agcy, Meteorol Res Inst, Oceanog & Geochem Res Dept, Tsukuba, Ibaraki 3050052, Japan
[2] Kyoto Univ, Inst Liberal Arts & Sci, Kyoto 6068501, Japan
[3] Hokkaido Univ, Inst Low Temp Sci, Water & Mat Cycles Div, Sapporo, Hokkaido 060, Japan
[4] Japan Meteorol Agcy, Fukuoka Dist Meteorol Observ, Tsukuba, Ibaraki 3050052, Japan
基金
日本学术振兴会;
关键词
sea surface salinity; Aquarius; data assimilation; 3DVAR; ocean estimation; mode water; WINTER MIXED-LAYER; MODE WATER; AMAZON; TEMPERATURE; SEA; VARIABILITY; ADVECTION; LATITUDE; SPACE; ARGO;
D O I
10.1002/qj.2561
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The impact of using sea surface salinity (SSS) data derived from the Aquarius satellite within a global ocean data assimilation system is investigated. In the central-eastern North Pacific, the more realistic SSS structures introduced by the Aquarius data also influence the salinity, temperature and potential vorticity fields obtained in the subsurface layer via enhanced mode-water formation. Around the Indonesian maritime continent, the Aquarius data assimilation leads to salinity distributions which are closer to buoy observations, while in the region of the Amazon River plume, subsurface temperatures are improved following a better reproduction of the low-salinity plume in the surface layer. The SSS model biases are also reduced in the eastern equatorial Pacific and in the Arctic Ocean, although our data are limited in number and accuracy at high latitudes. These results indicate the importance of Aquarius data in deriving improved representations of the global ocean from dynamical models.
引用
收藏
页码:2750 / 2759
页数:10
相关论文
共 50 条
[31]   Spatial and temporal scales of sea surface salinity in the tropical Indian Ocean from SMOS, Aquarius and SMAP [J].
Bao, Senliang ;
Wang, Huizan ;
Zhang, Ren ;
Yan, Hengqian ;
Chen, Jian .
JOURNAL OF OCEANOGRAPHY, 2020, 76 (05) :389-400
[32]   Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean [J].
Fournier, Severine ;
Lee, Tong ;
Tang, Wenqing ;
Steele, Michael ;
Olmedo, Estrella .
REMOTE SENSING, 2019, 11 (24)
[33]   An Ensemble Ocean Data Assimilation System for Seasonal Prediction [J].
Yin, Yonghong ;
Alves, Oscar ;
Oke, Peter R. .
MONTHLY WEATHER REVIEW, 2011, 139 (03) :786-808
[34]   An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields [J].
A. A. Zelenko ;
R. M. Vil’fand ;
Yu. D. Resnyanskii ;
B. S. Strukov ;
M. D. Tsyrulnikov ;
P. I. Svirenko .
Izvestiya, Atmospheric and Oceanic Physics, 2016, 52 :443-454
[35]   A Review of the Quality Control of Global Ocean Temperature and Salinity Data [J].
Chang, You-Soon .
JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY, 2012, 33 (06) :554-566
[36]   Regional Ocean Data Assimilation [J].
Edwards, Christopher A. ;
Moore, Andrew M. ;
Hoteit, Ibrahim ;
Cornuelle, Bruce D. .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 7, 2015, 7 :21-42
[37]   Assessment and adjustment of sea surface salinity products from Aquarius in the southeast Indian Ocean based on in situ measurement and MyOcean modeled data [J].
Shenzhen Xia ;
Changqing Ke ;
Xiaobing Zhou ;
Jie Zhang .
Acta Oceanologica Sinica, 2016, 35 :54-62
[38]   Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting [J].
Bell, MJ ;
Forbes, RM ;
Hines, A .
JOURNAL OF MARINE SYSTEMS, 2000, 25 (01) :1-22
[39]   The Impact of Aerosols on Satellite Radiance Data Assimilation Using NCEP Global Data Assimilation System [J].
Wei, Shih-Wei ;
Lu, Cheng-Hsuan ;
Liu, Quanhua ;
Collard, Andrew ;
Zhu, Tong ;
Grogan, Dustin ;
Li, Xu ;
Wang, Jun ;
Grumbine, Robert ;
Bhattacharjee, Partha S. .
ATMOSPHERE, 2021, 12 (04)
[40]   Impact of Glider Data Assimilation on the Global Ocean Forecasting System during the 2018 Hurricane Season [J].
Vargas, Maria Aristizabal ;
Miles, Travis N. ;
Glenn, Scott ;
Hogan, Patrick ;
Wilson, W. Douglas ;
Watlington, Roy ;
LaCour, Benjamin .
OCEANS 2019 MTS/IEEE SEATTLE, 2019,