Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries

被引:256
|
作者
Yang, Sheng [1 ]
Yue, Wenbo [1 ]
Zhu, Jia [1 ]
Ren, Yu [2 ]
Yang, Xiaojing [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Natl Inst Clean & Low Carbon Energy, Beijing 102209, Peoples R China
基金
中国国家自然科学基金;
关键词
composite materials; electrodes; hierarchical structures; porous materials; batteries; HIGH-CAPACITY; ANODE MATERIALS; STORAGE; OXIDE; NANOPARTICLES; MICROSPHERES; ELECTRODES; DEPOSITION; NANOWIRES; COMPOSITE;
D O I
10.1002/adfm.201203286
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene-based metal oxides generally show outstanding electrochemical performance due to the superior properties of graphene. However, the aggregation of active metal oxide nanoparticles on the graphene surface may result in a capacity fading and poor cycle performance. Here, a mesostructured graphene-based SnO2 composite is prepared through in situ growth of SnO2 particles on the graphene surface using cetyltrimethylammonium bromide as the structure-directing agent. This novel mesoporous composite inherits the advantages of graphene nanosheets and mesoporous materials and exhibits higher reversible capacity, better cycle performance, and better rate capability compared to pure mesoporous SnO2 and graphene-based nonporous SnO2. It is concluded that the synergetic effect between graphene and mesostructure benefits the improvement of the electrochemical properties of the hybrid composites. This facile method may offer an attractive alternative approach for preparation of the graphene-based mesoporous composites as high- performance electrodes for lithium-ion batteries.
引用
收藏
页码:3570 / 3576
页数:7
相关论文
共 50 条
  • [1] Graphene-based Pt/SnO2 nanocomposite with superior electrochemical performance for lithium-ion batteries
    Zhao, Peng
    Yue, Wenbo
    Xu, Zexuan
    Sun, Simin
    Bao, Huaying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 : 51 - 57
  • [2] Preparing graphene-based anodes with enhanced electrochemical performance for lithium-ion batteries
    Ershadi, Mahshid
    Javanbakht, Mehran
    Mozaffari, Sayed Ahmad
    Zahiri, Beniamin
    IONICS, 2020, 26 (10) : 4877 - 4895
  • [3] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Jiang, Shuhua
    Yue, Wenbo
    Gao, Ziqi
    Ren, Yu
    Ma, Hui
    Zhao, Xinhua
    Liu, Yunling
    Yang, Xiaojing
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3870 - 3876
  • [4] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Huang, Man-Xia
    Sun, Yan-Hui
    Guan, Dong-Cai
    Nan, Jun-Min
    Cai, Yue-Peng
    IONICS, 2019, 25 (12) : 5745 - 5757
  • [5] Revisiting on the effect and role of TiO2 layer thickness on SnO2 for enhanced electrochemical performance for lithium-ion batteries
    Cheong, Jun Young
    Chang, Joon Ha
    Kim, Chanhoon
    Mweta, Frank Jaksoni
    Jung, Ji-Won
    Lee, Jeong Yong
    Kim, Il-Doo
    ELECTROCHIMICA ACTA, 2017, 258 : 1140 - 1148
  • [6] Highly Ordered Mesoporous Antimony-Doped SnO2 Materials for Lithium-ion Battery
    Park, Gwi Ok
    Hyung, Eunbyeol
    Shon, Jeong Kuk
    Kim, Hansu
    Kim, Ji Man
    NANO, 2015, 10 (06)
  • [7] Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries
    Liu, Xiaowu
    Zhong, Xiongwu
    Yang, Zhenzhong
    Pan, Fusen
    Gu, Lin
    Yu, Yan
    ELECTROCHIMICA ACTA, 2015, 152 : 178 - 186
  • [8] Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries
    Wang, Bei
    Su, Dawei
    Park, Jinsoo
    Ahn, Hyojun
    Wang, Guoxiu
    NANOSCALE RESEARCH LETTERS, 2012, 7
  • [9] Facile synthesis of graphene-clamped nanostructured SnO2 materials for lithium-ion batteries
    Hong, Yanzhong
    Zhang, Jianyin
    Wang, Zhiyong
    Stankovich, Joseph J.
    Jin, Xianbo
    RSC ADVANCES, 2014, 4 (110) : 64402 - 64409
  • [10] Electrochemical performance of SnO2/C nanocomposites as anode materials for lithium-ion batteries
    Fan, Yingqiang
    Chen, Xiujuan
    Zhang, Laixi
    Wu, Jiakui
    Wang, Linlin
    Yu, Shurong
    Wu, Mingliang
    IONICS, 2023, 29 (02) : 497 - 504