Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries

被引:257
作者
Yang, Sheng [1 ]
Yue, Wenbo [1 ]
Zhu, Jia [1 ]
Ren, Yu [2 ]
Yang, Xiaojing [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Natl Inst Clean & Low Carbon Energy, Beijing 102209, Peoples R China
基金
中国国家自然科学基金;
关键词
composite materials; electrodes; hierarchical structures; porous materials; batteries; HIGH-CAPACITY; ANODE MATERIALS; STORAGE; OXIDE; NANOPARTICLES; MICROSPHERES; ELECTRODES; DEPOSITION; NANOWIRES; COMPOSITE;
D O I
10.1002/adfm.201203286
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene-based metal oxides generally show outstanding electrochemical performance due to the superior properties of graphene. However, the aggregation of active metal oxide nanoparticles on the graphene surface may result in a capacity fading and poor cycle performance. Here, a mesostructured graphene-based SnO2 composite is prepared through in situ growth of SnO2 particles on the graphene surface using cetyltrimethylammonium bromide as the structure-directing agent. This novel mesoporous composite inherits the advantages of graphene nanosheets and mesoporous materials and exhibits higher reversible capacity, better cycle performance, and better rate capability compared to pure mesoporous SnO2 and graphene-based nonporous SnO2. It is concluded that the synergetic effect between graphene and mesostructure benefits the improvement of the electrochemical properties of the hybrid composites. This facile method may offer an attractive alternative approach for preparation of the graphene-based mesoporous composites as high- performance electrodes for lithium-ion batteries.
引用
收藏
页码:3570 / 3576
页数:7
相关论文
共 33 条
[1]   On the Correlation between Mechanical Flexibility, Nanoscale Structure, and Charge Storage in Periodic Mesoporous CeO2 Thin Films [J].
Brezesinski, Torsten ;
Wang, John ;
Senter, Robert ;
Brezesinski, Kirstin ;
Dunn, Bruce ;
Tolbert, Sarah H. .
ACS NANO, 2010, 4 (02) :967-977
[2]   SnO2 nanosheet hollow spheres with improved lithium storage capabilities [J].
Ding, Shujiang ;
Lou, Xiong Wen .
NANOSCALE, 2011, 3 (09) :3586-3588
[3]   SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties [J].
Ding, Shujiang ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7155-7157
[4]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   A Facile One-Step Solvothermal Synthesis of SnO2/Graphene Nanocomposite and Its Application as an Anode Material for Lithium-Ion Batteries [J].
Huang, Xiaodan ;
Zhou, Xufeng ;
Zhou, Liang ;
Qian, Kun ;
Wang, Yunhua ;
Liu, Zhaoping ;
Yu, Chengzhong .
CHEMPHYSCHEM, 2011, 12 (02) :278-281
[7]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[8]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[9]   Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage [J].
Ji, Liwen ;
Tan, Zhongkui ;
Kuykendall, Tevye ;
An, Eun Ji ;
Fu, Yanbao ;
Battaglia, Vincent ;
Zhang, Yuegang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3611-3616
[10]   Critical size of a nano SnO2 electrode for Li-secondary battery [J].
Kim, C ;
Noh, M ;
Choi, M ;
Cho, J ;
Park, B .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3297-3301