Scaled-oscillation and regularity

被引:19
作者
Balogh, Zoltan M.
Csoernyei, Marianna
机构
[1] Univ Bern, Inst Math, CH-3012 Bern, Switzerland
[2] UCL, Dept Math, London WC1E 6BT, England
关键词
D O I
10.1090/S0002-9939-06-08290-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give suffcient conditions for Sobolev and Lipschitz functions in terms of their lower scaled-oscillation. The sharpness of these conditions is shown by examples. Our examples also show that a Stepanov-type differentiability theorem does not hold under the boundedness assumption of the lower scaled- oscillation.
引用
收藏
页码:2667 / 2675
页数:9
相关论文
共 18 条
[1]   The Stepanov differentiability theorem in metric measure spaces [J].
Balogh, ZM ;
Rogovin, K ;
Zürcher, T .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :405-422
[2]  
Balogh ZM, 2000, DUKE MATH J, V101, P555
[3]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[4]   DEFINITIONS OF QUASICONFORMALITY [J].
HEINONEN, J ;
KOSKELA, P .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :61-79
[5]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[6]   Exceptional sets for the definition of quasiconformality [J].
Kallunki, S ;
Koskela, P .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (04) :735-743
[7]  
Kallunki S, 2003, MICH MATH J, V51, P141
[8]  
KALLUNKI S, 2002, ANN ACAD SCI FENN DI, V131
[9]   Measurable differentiable structures and the Poincare inequality [J].
Keith, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (04) :1127-1150
[10]   A differentiable structure for metric measure spaces [J].
Keith, S .
ADVANCES IN MATHEMATICS, 2004, 183 (02) :271-315