COUNTING SHEAVES USING SPHERICAL CODES

被引:10
|
作者
Fouvry, Etienne [1 ]
Kowalski, Emmanuel [2 ]
Michel, Philippe [3 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
[2] ETH Zurich D MATH, CH-8092 Zurich, Switzerland
[3] EPFL SB IMB TAN, CH-1015 Lausanne, Switzerland
关键词
Lisse l-adic sheaves; trace functions; spherical codes; Riemann Hypothesis over finite fields; ELLIPTIC-CURVES;
D O I
10.4310/MRL.2013.v20.n2.a8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Riemann Hypothesis over finite fields and bounds for the size of spherical codes, we give explicit upper bounds, of polynomial size with respect to the size of the field, for the number of geometric isomorphism classes of geometrically irreducible l-adic middle-extension sheaves on a curve over a finite field, which are pointwise pure of weight 0 and have bounded ramification and rank. As an application, we show that "random" functions defined on a finite field cannot usually be approximated by short linear combinations of trace functions of sheaves with small complexity.
引用
收藏
页码:305 / 323
页数:19
相关论文
共 33 条
  • [1] Submodule codes as spherical codes in buildings
    Mima Stanojkovski
    Designs, Codes and Cryptography, 2023, 91 : 2449 - 2472
  • [2] Submodule codes as spherical codes in buildings
    Stanojkovski, Mima
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2449 - 2472
  • [3] Asymptotically dense spherical codes .1. Wrapped spherical codes
    Hamkins, J
    Zeger, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1774 - 1785
  • [4] Asymptotically dense spherical codes .2. Laminated spherical codes
    Hamkins, J
    Zeger, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1786 - 1798
  • [5] Stability of optimal spherical codes
    Boroczky, Karoly J.
    Glazyrin, Alexey
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (03): : 455 - 475
  • [6] On maximal spherical codes II
    Boyvalenkov, P
    Danev, D
    Landgev, I
    JOURNAL OF COMBINATORIAL DESIGNS, 1999, 7 (05) : 316 - 326
  • [7] Asymptotic bounds for spherical codes
    Manin, Yu, I
    Marcolli, M.
    IZVESTIYA MATHEMATICS, 2019, 83 (03) : 540 - 564
  • [8] Circulant Graphs and Spherical Codes
    Costa, S. I. R.
    Strapasson, J. E.
    Siqueira, R. M.
    Muniz, M.
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 42 - 45
  • [9] Complex Spherical Designs and Codes
    Roy, Aidan
    Suda, Sho
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (03) : 105 - 148
  • [10] Constructive Spherical Codes by Hopf Foliations
    Miyamoto, Henrique K.
    Costa, Sueli I. R.
    Earp, Henrique N. Sa
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (12) : 7925 - 7939