Gene Expression and Yeast Two-Hybrid Studies of 1R-MYB Transcription Factor Mediating Drought Stress Response in Chickpea (Cicer arietinum L.)

被引:35
|
作者
Ramalingam, Abirami [1 ]
Kudapa, Himabindu [1 ]
Pazhamala, Lekha T. [1 ]
Garg, Vanika [1 ]
Varshney, Rajeev K. [1 ,2 ,3 ]
机构
[1] Int Crops Res Inst Semi Arid Trop, Hyderabad, Andhra Pradesh, India
[2] Univ Western Australia, Sch Plant Biol, Crawley, WA, Australia
[3] Univ Western Australia, Inst Agr, Crawley, WA, Australia
来源
关键词
protein-protein interactions; chickpea; transcription factor; drought; stress tolerance; signaling pathways; ELEMENT-BINDING FACTOR; ABSCISIC-ACID; FUNCTIONAL GENOMICS; ABIOTIC STRESSES; SALT STRESS; ROOT-GROWTH; ARABIDOPSIS; DEHYDRATION; FAMILY; TOLERANCE;
D O I
10.3389/fpls.2015.01117
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomics-assisted breeding has a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs) have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR) was used to study the differential gene expression of selected TFs, identified from large-scale expressed sequence tags (ESTs) analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant), ICC 1882 (sensitive), JG 11 (elite), and JG 11+ (introgression line) were used for the study. Subsequently, a candidate single repeat MYB (1R-MYB) transcript that was remarkably induced in the drought tolerant genotypes under drought stress was cloned (coding sequence region for the 1R-MYB protein) and subjected to yeast two-hybrid (Y2H) analysis. The screening of a root cDNA library with Y2H using the 1R-MYB bait protein, identified three CDS encoding peptides namely, galactinol-sucrose galactosyltransferase 2, CBL (Calcineurin B-like)-interacting serine/threonine-protein kinase 25, and ABA responsive 17-like, which were confirmed by co-transformation in yeast. These findings provide preliminary insights into the ability of this 1R-MYB transcription factor to co-regulate drought tolerance mechanism in chickpea.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CAMTA transcription factor enhances salinity and drought tolerance in chickpea (Cicer arietinum L.)
    Anil Meenakshi
    Varun Kumar
    Arvind Kumar Kumar
    Shiv Dubey
    Samir V. Narayan
    Veena Sawant
    Pramod Arvind Pande
    Indraneel Shirke
    Plant Cell, Tissue and Organ Culture (PCTOC), 2022, 148 : 319 - 330
  • [2] CAMTA transcription factor enhances salinity and drought tolerance in chickpea (Cicer arietinum L.)
    Meenakshi
    Kumar, Anil
    Kumar, Varun
    Dubey, Arvind Kumar
    Narayan, Shiv
    Sawant, Samir, V
    Pande, Veena
    Shirke, Pramod Arvind
    Sanyal, Indraneel
    PLANT CELL TISSUE AND ORGAN CULTURE, 2022, 148 (02) : 319 - 330
  • [3] Genome-wide identification and expression analysis of the GRAS gene family in response to drought stress in chickpea (Cicer arietinum L.)
    Sheel Yadav
    Yashwant K. Yadava
    Deshika Kohli
    Shashi Meena
    Vijay Paul
    P. K. Jain
    3 Biotech, 2022, 12
  • [4] Genome-wide identification and expression analysis of the GRAS gene family in response to drought stress in chickpea (Cicer arietinum L.)
    Yadav, Sheel
    Yadava, Yashwant K.
    Kohli, Deshika
    Meena, Shashi
    Paul, Vijay
    Jain, P. K.
    3 BIOTECH, 2022, 12 (03)
  • [5] Expression Patterns of Drought-related miRNAs in Chickpea (Cicer arietinum L.) under Drought Stress
    Gaafar, Reda M.
    Seyam, Maha M.
    El-Shanshory, Adel R.
    EGYPTIAN JOURNAL OF BOTANY, 2022, 62 (01): : 227 - 240
  • [6] Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance
    Deepti Jain
    Debasis Chattopadhyay
    BMC Plant Biology, 10
  • [7] Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance
    Jain, Deepti
    Chattopadhyay, Debasis
    BMC PLANT BIOLOGY, 2010, 10
  • [8] Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress
    Arefian, Mohammad
    Shafaroudi, Saeid Malekzadeh
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (09)
  • [9] Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress
    Mohammad Arefian
    Saeid Malekzadeh Shafaroudi
    Acta Physiologiae Plantarum, 2015, 37
  • [10] Yield performance and responses studies of chickpea (Cicer arietinum L.) genotypes under drought stress
    Yaqoob, Muhammad
    Hollington, Phill A.
    Mahar, Ahmad B.
    Gurmani, Zulfiqar A.
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2013, 25 (02): : 117 - 123