Automatic classification of cortical thickness patterns in Alzheimer's disease patients, using the Louvain modularity clustering method

被引:2
作者
Corlier, Fabian W. [1 ]
Moyer, Daniel [1 ]
Braskie, Meredith N. [1 ]
Thompson, Paul M. [1 ]
Dorothee, Guillaume [4 ]
Potier, Marie Claude [5 ]
Sarazin, Marie [2 ]
Bottlaender, Michel [3 ,6 ]
Lagarde, Julien [2 ]
机构
[1] Univ Southern Calif, Keck Sch Med USC, Stevens Neuroimaging & Informat Inst, Imaging Genet Ctr, Marina Del Rey, CA 90292 USA
[2] Univ Paris 05, Sorbonne Paris Cite, Ctr Hosp St Anne, Neurol Memoiy & Language Unit, Paris, France
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, Serv Hosp Freder Joliot,CEA,INSERM,UMR 1023,IMIV, Orsay, France
[4] Sorbonne Univ, Hop St Antoine, INSERM,Ctr Rech St Antoine, Team Immune Syst Neuroinflammat & Ncurodegenerat, Paris, France
[5] Hop La Pitie Salpetriere, CNRS, ICM Inst Cerveau & Moelle Epiniere, UMR7225,INSERM,U1127, Paris, France
[6] CEA, Neurospin, UN1ACT, Gif Sur Yvette, France
来源
14TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS | 2018年 / 10975卷
关键词
Alzheimer's Disease; Subtype; Heterogeneity; Automatic Classification; MRI; Magnetic Resonance Imaging; Modularity Clustering; Free Surfer; COMMUNITY STRUCTURE; PHYSICAL-ACTIVITY; HETEROGENEITY; INFLAMMATION; DEPOSITION; ONSET; RISK;
D O I
10.1117/12.2511573
中图分类号
R-058 [];
学科分类号
摘要
Alzheimer's disease is heterogeneous and despite some consistent neuropathological hallmarks, different clinical forms have been identified, including non-amnestic presentations. Even in anmestic forms, the presentation of the disease can differ across individuals, in terms of age of onset, dynamics of progression and specific impairment profiles. Different distributions of neurofibrillary tangles exist in AD, and these are linked with structural differences detectable on ante-mortem MRI. but these are hard to identify in the earlier stages of disease. In the present work, we validate and test a previously proposed method for identifying subtypes of cortical atrophy in AD, based on MRI data from an independent case/control study of individuals defined by pathophysiological biomarkers. We implemented a clustering method based on the Louvain modularity method, and tested it across a range of pre-processing parameters. Our cohort of participants was comprised of 111 participants (mean age: 67.7 year; range: 51-91), including 37 cognitively normal controls, 43 prodromal AD, and 31 demented AD patients. We identified 4 patient clusters with distinct atrophy patterns either predominantly in the temporal lobes (groups 0 and 1), in the parietal and temporal lobes (group 2), or in the frontal and temporal lobes (group 3). Further evaluation of neuro-psychological characteristics of each patient cluster will be carried out in the future. In conclusion, the modularity-based clustering method may help to identify specific subtypes of atrophy in neurological diseases such as AD.
引用
收藏
页数:12
相关论文
共 27 条
[1]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[2]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[3]   PHYSICAL ACTIVITY, INFLAMMATION, AND VOLUME OF THE AGING BRAIN [J].
Braskie, M. N. ;
Boyle, C. P. ;
Rajagopalan, P. ;
Gutman, B. A. ;
Toga, A. W. ;
Raji, C. A. ;
Tracy, R. P. ;
Kuller, L. H. ;
Becker, J. T. ;
Lopez, O. L. ;
Thompson, P. M. .
NEUROSCIENCE, 2014, 273 :199-209
[4]   Amyloid Deposition in Early Onset versus Late Onset Alzheimer's Disease [J].
Cho, Hanna ;
Seo, Sang Won ;
Kim, Jung-Hyun ;
Suh, Mee Kyung ;
Lee, Jae-Hong ;
Choe, Yearn Seong ;
Lee, Kyung-Han ;
Kim, Jae Seung ;
Kim, Geon Ha ;
Noh, Young ;
Ye, Byoung Seok ;
Kim, Hee Jin ;
Yoon, Cindy W. ;
Chin, Juhee ;
Na, Duk L. .
JOURNAL OF ALZHEIMERS DISEASE, 2013, 35 (04) :813-821
[5]   Systemic inflammation as a predictor of brain aging: Contributions of physical activity, metabolic risk, and genetic risk [J].
Corlier, Fabian ;
Hafzalla, George ;
Faskowitz, Joshua ;
Kuller, Lewis H. ;
Becker, James T. ;
Lopez, Oscar L. ;
Thompson, Paul M. ;
Braskie, Meredith N. .
NEUROIMAGE, 2018, 172 :118-129
[6]   Posterior cortical atrophy [J].
Crutch, Sebastian J. ;
Lehmann, Manja ;
Schott, Jonathan M. ;
Rabinovici, Gil D. ;
Rossor, Martin N. ;
Fox, Nick C. .
LANCET NEUROLOGY, 2012, 11 (02) :170-178
[7]   Genetic variations underlying Alzheimer's disease: evidence from genome-wide association studies and beyond [J].
Cuyvers, Elise ;
Sleegers, Kristel .
LANCET NEUROLOGY, 2016, 15 (08) :857-868
[8]   Similar amyloid-β burden in posterior cortical atrophy and Alzheimer's disease [J].
de Souza, Leonardo Cruz ;
Corlier, Fabian ;
Habert, Marie-Odile ;
Uspenskaya, Olga ;
Maroy, Renaud ;
Lamari, Foudil ;
Chupin, Marie ;
Lehericy, Stephane ;
Colliot, Olivier ;
Hahn-Barma, Valerie ;
Samri, Dalila ;
Dubois, Bruno ;
Bottlaender, Michel ;
Sarazin, Marie .
BRAIN, 2011, 134 :2036-2043
[9]   Revising the definition of Alzheimer's disease: a new lexicon [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Cummings, Jeffrey L. ;
DeKosky, Steven T. ;
Barberger-Gateau, Pascale ;
Delacourte, Andre ;
Frisoni, Giovanni ;
Fox, Nick C. ;
Galasko, Douglas ;
Gauthier, Serge ;
Hampel, Harald ;
Jicha, Gregory A. ;
Meguro, Kenichi ;
O'Brien, John ;
Pasquier, Florence ;
Robert, Philippe ;
Rossor, Martin ;
Salloway, Steven ;
Sarazin, Marie ;
de Souza, Leonardo C. ;
Stern, Yaakov ;
Visser, Pieter J. ;
Scheltens, Philip .
LANCET NEUROLOGY, 2010, 9 (11) :1118-1127
[10]   Exercise training increases size of hippocampus and improves memory [J].
Erickson, Kirk I. ;
Voss, Michelle W. ;
Prakash, Ruchika Shaurya ;
Basak, Chandramallika ;
Szabo, Amanda ;
Chaddock, Laura ;
Kim, Jennifer S. ;
Heo, Susie ;
Alves, Heloisa ;
White, Siobhan M. ;
Wojcicki, Thomas R. ;
Mailey, Emily ;
Vieira, Victoria J. ;
Martin, Stephen A. ;
Pence, Brandt D. ;
Woods, Jeffrey A. ;
McAuley, Edward ;
Kramer, Arthur F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (07) :3017-3022