Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification

被引:555
作者
Hosaka, T
Biggs, WH
Tieu, D
Boyer, AD
Varki, NM
Cavenee, WK
Arden, KC
机构
[1] Univ Calif San Diego, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Ctr Canc, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Mol Genet, La Jolla, CA 92093 USA
关键词
D O I
10.1073/pnas.0400093101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic analysis in Caenorhabditis elegans has uncovered essential roles for DAF-16 in longevity, metabolism, and reproduction. The mammalian orthologs of DAF-16, the closely-related FOXO subclass of forkhead transcription factors (FKHR/FOXO1, FKHRL1/FOXO3a, and AFX/FOXO4), also have important roles in cell cycle arrest, apoptosis and stress responses in vitro, but their in vivo physiological roles are largely unknown. To elucidate their role in normal development and physiology, we disrupted each of the Foxo genes in mice. Foxo1-null embryos died on embryonic day 10.5 as a consequence of incomplete vascular development. Foxo1-null embryonic and yolk sac vessels were not well developed at embryonic day 9.5, and Foxo1 expression was found in a variety of embryonic vessels, suggesting a crucial role of this transcription factor in vascular formation. On the other hand, both Foxo3a- and Foxo4-null mice were viable and grossly indistinguishable from their littermate controls, indicating dispensability of these two members of the Foxo transcription factor family for normal vascular development. Foxo3a-null females showed age-dependent infertility and had abnormal ovarian follicular development. In contrast, histological analyses of Foxo4-null mice did not identify any consistent abnormalities. These results demonstrate that the physiological roles of Foxo genes are functionally diverse in mammals.
引用
收藏
页码:2975 / 2980
页数:6
相关论文
共 27 条
  • [1] Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily
    Anderson, MJ
    Viars, CS
    Czekay, S
    Cavenee, WK
    Arden, KC
    [J]. GENOMICS, 1998, 47 (02) : 187 - 199
  • [2] [Anonymous], 1994, MANIPULATING MOUSE E
  • [3] Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling
    Arden, KC
    Biggs, WH
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 403 (02) : 292 - 298
  • [4] Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse
    Biggs, WH
    Cavenee, WK
    Arden, KC
    [J]. MAMMALIAN GENOME, 2001, 12 (06) : 416 - 425
  • [5] Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1
    Biggs, WH
    Meisenhelder, J
    Hunter, T
    Cavenee, WK
    Arden, KC
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) : 7421 - 7426
  • [6] FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts
    Bois, PRJ
    Grosveld, GC
    [J]. EMBO JOURNAL, 2003, 22 (05) : 1147 - 1157
  • [7] Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor
    Brunet, A
    Bonni, A
    Zigmond, MJ
    Lin, MZ
    Juo, P
    Hu, LS
    Anderson, MJ
    Arden, KC
    Blenis, J
    Greenberg, ME
    [J]. CELL, 1999, 96 (06) : 857 - 868
  • [8] Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty
    Burgering, BMT
    Medema, RH
    [J]. JOURNAL OF LEUKOCYTE BIOLOGY, 2003, 73 (06) : 689 - 701
  • [9] Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a
    Castrillon, DH
    Miao, LL
    Kollipara, R
    Horner, JW
    DePinho, RA
    [J]. SCIENCE, 2003, 301 (5630) : 215 - 218
  • [10] Elvin JA, 1998, REV REPROD, V3, P183, DOI 10.1530/revreprod/3.3.183