Vehicle Detection and Classification in Aerial Images using Convolutional Neural Networks

被引:5
|
作者
Li, Chih-Yi [1 ]
Lin, Huei-Yung [1 ,2 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621, Taiwan
[2] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621, Taiwan
来源
PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP | 2020年
关键词
Aerial Image; Convolutional Neural Network; Vehicle Detection;
D O I
10.5220/0008941707750782
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Due to the popularity of unmanned aerial vehicles, the acquisition of aerial images has become widely available. The aerial images have been used in many applications such as the investigation of roads, buildings, agriculture distribution, and land utilization, etc. In this paper, we propose a technique for vehicle detection and classification from aerial images based on the modification of Faster R-CNN framework. A new dataset for vehicle detection, VAID (Vehicle Aerial Imaging from Drone), is also introduced for public use. The images in the dataset are annotated with 7 common vehicle categories, including sedan, minibus, truck, pickup truck, bus, cement truck and trailer, for network training and testing. We compare the results of vehicle detection in aerial images with widely used network architectures and training datasets. The experiments demonstrate that the proposed method and dataset can achieve high vehicle detection and classification rates under various road and traffic conditions.
引用
收藏
页码:775 / 782
页数:8
相关论文
共 50 条
  • [1] Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks
    Zhong, Jiandan
    Lei, Tao
    Yao, Guangle
    SENSORS, 2017, 17 (12)
  • [2] FAST MULTIDIRECTIONAL VEHICLE DETECTION ON AERIAL IMAGES USING REGION BASED CONVOLUTIONAL NEURAL NETWORKS
    Tang, Tianyu
    Zhou, Shilin
    Deng, Zhipeng
    Lei, Lin
    Zou, Huanxin
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1844 - 1847
  • [3] Vehicle Detection and Classification Using Convolutional Neural Networks
    Sheng, Minglan
    Liu, Chunfang
    Zhang, Qi
    Lou, Lu
    Zheng, Yu
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 581 - 587
  • [4] Toward Fast and Accurate Vehicle Detection in Aerial Images Using Coupled Region-Based Convolutional Neural Networks
    Deng, Zhipeng
    Sun, Hao
    Zhou, Shilin
    Zhao, Juanping
    Zou, Huanxin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3652 - 3664
  • [5] Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images
    Fan, Ching-Lung
    ARCHITECTURAL ENGINEERING AND DESIGN MANAGEMENT, 2024, 20 (02) : 390 - 410
  • [6] Fast Automatic Vehicle Detection in UAV Images Using Convolutional Neural Networks
    Luo, Xin
    Tian, Xiaoyue
    Zhang, Huijie
    Hou, Weimin
    Leng, Geng
    Xu, Wenbo
    Jia, Haitao
    He, Xixu
    Wang, Meng
    Zhang, Jian
    REMOTE SENSING, 2020, 12 (12)
  • [7] Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining
    Tang, Tianyu
    Zhou, Shilin
    Deng, Zhipeng
    Zou, Huanxin
    Lei, Lin
    SENSORS, 2017, 17 (02)
  • [8] Deep Neural Network Based Vehicle Detection and Classification of Aerial Images
    Kumar, Sandeep
    Jain, Arpit
    Rani, Shilpa
    Alshazly, Hammam
    Idris, Sahar Ahmed
    Bourouis, Sami
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (01) : 119 - 131
  • [9] Vehicle detection and classification in shadowy traffic images using wavelets and neural networks
    Chao, TH
    Lau, B
    Park, Y
    TRANSPORTATION SENSORS AND CONTROLS: COLLISION AVOIDANCE, TRAFFIC MANAGEMENT, AND ITS, 1997, 2902 : 136 - 147
  • [10] Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning
    Md Farid, Dewan
    Kumer Das, Proshanta
    Islam, Monirul
    Sina, Ebna
    IEEE ACCESS, 2025, 13 : 26429 - 26455