Fast Multimodulus Blind Deconvolution Algorithms

被引:4
|
作者
Mayyala, Qadri [1 ]
Abed-Meraim, Karim [2 ]
Zerguine, Azzedine [3 ,4 ]
Lawal, Abdulmajid [3 ,4 ]
机构
[1] Birzeit Univ, Elect & Comp Engn Dept, Birzeit 627, Palestine
[2] Univ Orleans, PRISME Lab, Inst Univ France IUF, F-45100 Orleans, France
[3] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
关键词
Deconvolution; Quadrature amplitude modulation; Wireless communication; Convergence; Blind source separation; MIMO communication; Training; Blind deconvolution; blind source separation; fixed point optimization; multi-modulus algorithm; SOURCE SEPARATION; EQUALIZATION; IDENTIFICATION; BOUNDS;
D O I
10.1109/TWC.2022.3178480
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel class of fast Multi-Modulus algorithms (fastMMA) for Blind Source Separation (BSS) and deconvolution are presented in this work. These are obtained through a fast fixed-point optimization rule used to minimize the Multi-Modulus (MM) criterion. Here, two BSS versions are provided to separate the sources either by finding the separation matrix at once or by separating a single source each time using a fast deflation technique. Further, the latter method is extended to cover systems of convolutive nature. Interestingly, these algorithms are implicitly shown to belong to the fixed step-size gradient descent family, henceforth, an algebraic variable step-size is proposed to make these algorithms converge even much faster. Apart from being computationally and performance-wise attractive, the new algorithms are free of any user-defined parameters.
引用
收藏
页码:9627 / 9637
页数:11
相关论文
共 50 条
  • [1] A REGIONAL MULTIMODULUS ALGORITHM FOR BLIND IMAGE DECONVOLUTION
    Mendes Filho, Joao
    Miranda, Maria D.
    Silva, Magno T. M.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4512 - 4516
  • [2] The multimodulus blind equalization and its generalized algorithms
    Yang, JA
    Werner, JJ
    Dumont, GA
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2002, 20 (05) : 997 - 1015
  • [3] Fast algorithms for phase diversity-based blind deconvolution
    Vogel, CR
    Chan, T
    Plemmons, R
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES, PARTS 1 AND 2, 1998, 3353 : 994 - 1005
  • [4] Soft constraint satisfaction multimodulus blind equalization algorithms
    Abrar, S
    Zerguine, A
    Deriche, M
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) : 637 - 640
  • [5] Soft constraint satisfaction multimodulus blind equalization algorithms
    Abrar, S
    Zerguine, A
    Deriche, M
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 853 - 856
  • [6] Convergence analysis of multimodulus-based blind equalization algorithms
    Chien, WC
    Yuan, JT
    IEEE INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2004 (ISCIT 2004), PROCEEDINGS, VOLS 1 AND 2: SMART INFO-MEDIA SYSTEMS, 2004, : 941 - 946
  • [7] Understanding Blind Deconvolution Algorithms
    Levin, Anat
    Weiss, Yair
    Durand, Fredo
    Freeman, William T.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (12) : 2354 - 2367
  • [8] KuicNet algorithms for blind deconvolution
    Douglas, SC
    Kung, SY
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 3 - 12
  • [9] Blind deconvolution by genetic algorithms
    Chen, YW
    Nakao, Z
    Tamura, S
    NONLINEAR IMAGE PROCESSING VII, 1996, 2662 : 192 - 196
  • [10] Fast convergent multimodulus, algorithm for blind equalization of QAM signals
    Sheikh, Shahzad Amin
    Fan, Pingzhi
    ICIET 2007: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND EMERGING TECHNOLOGIES, 2007, : 37 - 41