Long Short-Term Memory Neural Networks for Online Disturbance Detection in Satellite Image Time Series

被引:67
作者
Kong, Yun-Long [1 ]
Huang, Qingqing [1 ]
Wang, Chengyi [1 ]
Chen, Jingbo [1 ]
Chen, Jiansheng [1 ]
He, Dongxu [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
关键词
long short-term memory; LSTM; recurrent neural network; RNN; online disturbance detection; satellite image time series; SITS; CLASSIFICATION; VEGETATION;
D O I
10.3390/rs10030452
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A satellite image time series (SITS) contains a significant amount of temporal information. By analysing this type of data, the pattern of the changes in the object of concern can be explored. The natural change in the Earth's surface is relatively slow and exhibits a pronounced pattern. Some natural events (for example, fires, floods, plant diseases, and insect pests) and human activities (for example, deforestation and urbanisation) will disturb this pattern and cause a relatively profound change on the Earth's surface. These events are usually referred to as disturbances. However, disturbances in ecosystems are not easy to detect from SITS data, because SITS contain combined information on disturbances, phenological variations and noise in remote sensing data. In this paper, a novel framework is proposed for online disturbance detection from SITS. The framework is based on long short-term memory (LSTM) networks. First, LSTM networks are trained by historical SITS. The trained LSTM networks are then used to predict new time series data. Last, the predicted data are compared with real data, and the noticeable deviations reveal disturbances. Experimental results using 16-day compositions of the moderate resolution imaging spectroradiometer (MOD13Q1) illustrate the effectiveness and stability of the proposed approach for online disturbance detection.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
Audhkhasi K., 2013, INT JOINT C NEUR NET, P2738
[2]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[3]   A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series [J].
Bellon, Beatriz ;
Begue, Agnes ;
Lo Seen, Danny ;
de Almeida, Claudio Aparecido ;
Simoes, Margareth .
REMOTE SENSING, 2017, 9 (06)
[4]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[5]  
Boriah Shyam., 2010, TIME SERIES CHANGE D
[6]   Multivariate time series modeling of geometric features of spatio-temporal volumes for content based video retrieval [J].
Chattopadhyay C. ;
Maurya A.K. .
International Journal of Multimedia Information Retrieval, 2014, 3 (1) :15-28
[7]  
Chen MC, 2016, 2016 INTERNATIONAL CONFERENCE ON INFORMATICS, MANAGEMENT ENGINEERING AND INDUSTRIAL APPLICATION (IMEIA 2016), P1, DOI 10.1109/PLASMA.2016.7534032
[8]   Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination [J].
Chuvieco, E ;
Martín, MP ;
Palacios, A .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (23) :5103-5110
[9]   Long-Term Recurrent Convolutional Networks for Visual Recognition and Description [J].
Donahue, Jeff ;
Hendricks, Lisa Anne ;
Rohrbach, Marcus ;
Venugopalan, Subhashini ;
Guadarrama, Sergio ;
Saenko, Kate ;
Darrell, Trevor .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) :677-691
[10]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211