From Damage Percolation to Crack Nucleation Through Finite Size Criticality

被引:104
作者
Shekhawat, Ashivni [1 ]
Zapperi, Stefano [2 ,3 ]
Sethna, James P. [1 ]
机构
[1] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA
[2] CNR, IENI, I-20125 Milan, Italy
[3] ISI Fdn, I-10126 Turin, Italy
基金
美国国家科学基金会;
关键词
ELECTRICAL BREAKDOWN; FUSE NETWORK; FRACTURE; BUNDLES; MEDIA; TRANSITION; AVALANCHES; DISORDER; FAILURE; MODEL;
D O I
10.1103/PhysRevLett.110.185505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a unified theory of fracture in disordered brittle media that reconciles apparently conflicting results reported in the literature. Our renormalization group based approach yields a phase diagram in which the percolation fixed point, expected for infinite disorder, is unstable for finite disorder and flows to a zero-disorder nucleation-type fixed point, thus showing that fracture has a mixed first order and continuous character. In a region of intermediate disorder and finite system sizes, we predict a crossover with mean-field avalanche scaling. We discuss intriguing connections to other phenomena where critical scaling is only observed in finite size systems and disappears in the thermodynamic limit.
引用
收藏
页数:5
相关论文
共 29 条
[11]   Origin of the universal roughness exponent of brittle fracture surfaces: Stress-weighted percolation in the damage zone [J].
Hansen, A ;
Schmittbuhl, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4
[12]   BURST AVALANCHES IN BUNDLES OF FIBERS - LOCAL VERSUS GLOBAL LOAD-SHARING [J].
HANSEN, A ;
HEMMER, PC .
PHYSICS LETTERS A, 1994, 184 (06) :394-396
[13]   CHAIN-OF-BUNDLES PROBABILITY MODEL FOR STRENGTH OF FIBROUS MATERIALS .1. ANALYSIS AND CONJECTURES [J].
HARLOW, DG ;
PHOENIX, SL .
JOURNAL OF COMPOSITE MATERIALS, 1978, 12 (APR) :195-214
[14]   THE DISTRIBUTION OF SIMULTANEOUS FIBER FAILURES IN FIBER-BUNDLES [J].
HEMMER, PC ;
HANSEN, A .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (04) :909-914
[15]   ELECTRICAL BREAKDOWN IN A FUSE NETWORK WITH RANDOM, CONTINUOUSLY DISTRIBUTED BREAKING STRENGTHS [J].
KAHNG, B ;
BATROUNI, GG ;
REDNER, S ;
DE ARCANGELIS, L ;
HERRMANN, HJ .
PHYSICAL REVIEW B, 1988, 37 (13) :7625-7637
[16]   An efficient algorithm for simulating fracture using large fuse networks [J].
Kumar, P ;
Nukala, VV ;
Simunovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (45) :11403-11412
[17]   Fracture Strength of Disordered Media: Universality, Interactions, and Tail Asymptotics [J].
Manzato, Claudio ;
Shekhawat, Ashivni ;
Nukala, Phani K. V. V. ;
Alava, Mikko J. ;
Sethna, James P. ;
Zapperi, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[18]   Fracturing Highly Disordered Materials [J].
Moreira, A. A. ;
Oliveira, C. L. N. ;
Hansen, A. ;
Araujo, N. A. M. ;
Herrmann, H. J. ;
Andrade, J. S., Jr. .
PHYSICAL REVIEW LETTERS, 2012, 109 (25)
[19]   EXPERIMENTAL-EVIDENCE FOR CRITICAL-DYNAMICS IN MICROFRACTURING PROCESSES [J].
PETRI, A ;
PAPARO, G ;
VESPIGNANI, A ;
ALIPPI, A ;
COSTANTINI, M .
PHYSICAL REVIEW LETTERS, 1994, 73 (25) :3423-3426
[20]   RUPTURE OF HETEROGENEOUS MEDIA IN THE LIMIT OF INFINITE DISORDER [J].
ROUX, S ;
HANSEN, A ;
HERRMANN, H ;
GUYON, E .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :237-244