Polymerization of Hexyl Methacrylate in Nanoemulsions Made by Low and High Energy Methods

被引:2
作者
Alvarado, A. G. [1 ]
Perez-Carrillo, L. A. [1 ]
Arellano, M. [1 ]
Rabelero, M. [1 ]
Ceja, I. [2 ]
Mendizabal, E. [3 ]
Solans, C. [4 ]
Esquena, J. [4 ]
Puig, J. E. [1 ]
机构
[1] Univ Guadalajara, Dept Ingn Quim, Guadalajara 44430, Jalisco, Mexico
[2] Univ Guadalajara, Dept Fis, Guadalajara 44430, Jalisco, Mexico
[3] Univ Guadalajara, Dept Quim, Guadalajara 44430, Jalisco, Mexico
[4] CSIC, IQAC, Dept Nanotecnol Quim & Biomol NQB, Barcelona, Spain
来源
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY | 2013年 / 50卷 / 08期
关键词
Nanoparticles; nanoemulsion polymerization; Phase Inversion Temperature; microfluidization; MINIEMULSION POLYMERIZATION; NANOPARTICLES; MICROEMULSIONS; TEMPERATURE;
D O I
10.1080/10601325.2013.802147
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The synthesis of poly(hexyl methacrylate) nanoparticles in nanoemulsions containing squalane as hydrophobe is reported here. A comparison of the polymerization kinetics of nanoemulsions prepared by Phase Inversion Temperature (low energy method) and microfluidization (high energy method), as well as polymer characteristics are presented. Nanoemulsion polymerizations carried out a 20 degrees C were extremely fast using a par redox especially for the low-energy nanoemulsions. The particles obtained were only slightly larger than the original nanoemulsion droplets, indicating that the droplets acted as templates, and that squalane diminished substantially monomer diffusion between reacting and non-reacting monomer droplets. Molar masses and glass transition temperatures of the poly(hexyl methacrylate) obtained here were practically independent of conversion and surfactant concentration, as well as of the nanoemulsification method used.
引用
收藏
页码:812 / 820
页数:9
相关论文
共 34 条
[1]   Narrow Size-Distribution Poly(methyl methacrylate) Nanoparticles Made by Semicontinuous Heterophase Polymerization [J].
Aguilar, J. ;
Rabelero, M. ;
Nuno-Donlucas, S. M. ;
Mendizabal, E. ;
Martinez-Richa, A. ;
Lopez, R. G. ;
Arellano, M. ;
Puig, J. E. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (03) :1827-1834
[2]  
Alvarado A. G., 2013, J MACROMO A IN PRESS
[3]  
Andrews R. J., 1998, POLYM HDB, VVI, P193
[4]  
Anton N, 2008, J CONTROL RELEASE, V128, P185, DOI 10.1016/j.jconrel.2008.02.007
[5]   Polyreactions in miniemulsions [J].
Antonietti, M ;
Landfester, K .
PROGRESS IN POLYMER SCIENCE, 2002, 27 (04) :689-757
[6]  
Arshady R., 1999, MICROSPHERES MICROCA
[7]   Biofunctionalized block copolymer nanoparticles based on ring-opening metathesis polymerization [J].
Carrillo, A ;
Yanjarappa, MJ ;
Gujraty, KV ;
Kane, RS .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44 (02) :928-939
[8]   Miniemulsion Polymerization Based on Low Energy Emulsification with Preservation of Initial Droplet Identity [J].
Cheng, Siqing ;
Guo, Yi ;
Zetterlund, Per B. .
MACROMOLECULES, 2010, 43 (19) :7905-7907
[9]   Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers [J].
Crespy, Daniel ;
Landfester, Katharina .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2010, 6 :1132-1148
[10]   Miniemulsion polymerization templates: A systematic comparison between low energy emulsification (Near-PIT) and ultrasound emulsification methods [J].
Galindo-Alvarez, Johanna ;
Boyd, David ;
Marchal, Philippe ;
Tribet, Christophe ;
Perrin, Patrick ;
Marie-Begue, Emmanuelle ;
Durand, Alain ;
Sadtler, Veronique .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 374 (1-3) :134-141