Computation and theory of Euler sums of generalized hyperharmonic numbers

被引:12
作者
Xu, Ce [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
MULTIPLE ZETA VALUES;
D O I
10.1016/j.crma.2018.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Dil and Boyadzhiev[10] proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence ({0}(r), 1). In this paper, we show that the sums of multiple harmonic numbers whose indices are the sequence ({0}(r), 1;{1}(k-1)) can be expressed in terms of (multiple) zeta values, (multiple) harmonic numbers, and Stirling numbers of the first kind, and give an explicit formula. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 27 条
  • [1] [Anonymous], ARXIV170100391
  • [2] [Anonymous], APPL ANAL DISCRETE M
  • [3] [Anonymous], 1996, ELECT J COMB
  • [4] [Anonymous], BOOK NUMBERS
  • [5] Bailey D.H., 1994, Exp. Math, V3, P17, DOI DOI 10.1080/10586458.1994.10504573
  • [6] Benjamin A.T., 2003, Integers, V3, P1
  • [7] Berndt B. C., 1989, Ramanujan's Notebooks Part II
  • [8] EXPLICIT EVALUATION OF EULER SUMS
    BORWEIN, D
    BORWEIN, JM
    GIRGENSOHN, R
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 277 - 294
  • [9] Borwein J, 1996, MATH INTELL, V18, P12
  • [10] The evaluation of character Euler double sums
    Borwein, J. M.
    Zucker, I. J.
    Boersma, J.
    [J]. RAMANUJAN JOURNAL, 2008, 15 (03) : 377 - 405