Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression

被引:241
作者
Li, Xiaoyu [1 ,2 ]
Wang, Zhenpo [1 ,2 ]
Yan, Jinying [3 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[3] Royal Inst Technol, Chenm Engn, Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; State of health; Incremental capacity analysis; Correlation coefficient; Gaussian regression process; LI-ION BATTERIES; DIAGNOSIS METHOD; STATE; MODEL; PACK;
D O I
10.1016/j.jpowsour.2019.03.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 2003, P SUMM SCH MACH LEAR
[2]  
[Anonymous], [No title captured]
[3]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[4]   Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications [J].
Chen, Zheng ;
Mi, Chunting Chris ;
Fu, Yuhong ;
Xu, Jun ;
Gong, Xianzhi .
JOURNAL OF POWER SOURCES, 2013, 240 :184-192
[5]   Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering [J].
Dong, Guangzhong ;
Chen, Zonghai ;
Wei, Jingwen ;
Ling, Qiang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (11) :8646-8655
[6]   Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles [J].
Farmann, Alexander ;
Waag, Wladislaw ;
Marongiu, Andrea ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2015, 281 :114-130
[7]   Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy [J].
Galeotti, Matteo ;
Cina, Lucio ;
Giammanco, Corrado ;
Cordiner, Stefano ;
Di Carlo, Aldo .
ENERGY, 2015, 89 :678-686
[8]   Prognostics in battery health management [J].
Goebel, Kai ;
Saha, Bhaskar ;
Saxena, Abhinav ;
Celaya, Jose R. ;
Christophersen, Jon P. .
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2008, 11 (04) :33-40
[9]  
Isufi E., 2016, ARXIV160204436
[10]   Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries [J].
Jokar, Ali ;
Rajabloo, Barzin ;
Desilets, Martin ;
Lacroix, Marcel .
JOURNAL OF POWER SOURCES, 2016, 327 :44-55