DUAL PERFECT BASES AND DUAL PERFECT GRAPHS

被引:0
作者
Kahng, Byeong Hoon [1 ]
Kang, Seok-Jin [1 ,2 ]
Kashiwara, Masaki [1 ,3 ]
Suh, Uhi Rinn [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
Perfect basis; dual perfect basis; upper global basis; lower global basis; HIGHEST WEIGHT MODULES; CRYSTAL BASES; CATEGORIFICATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of dual perfect bases and dual perfect graphs. We show that every integrable highest, weight module V-q, (A) over a quantum generalized Kac-Moody algebra U-q (g) has a dual perfect basis and its dual perfect graph is isomorphic to the crystal B(lambda). We also show that the negative half U-q(-) (g) has a dual perfect basis whose dual perfect graph is isomorphic to the crystal B(infinity). More generally, we prove that all the dual perfect graphs of a given dual perfect space are isomorphic as abstract crystals. Finally, we show that the isomorphism classes of finitely generated graded projective indecomposable modules over a Khovanov-Lauda-Rouquier algebra and its cyclotomic quotients form dual perfect bases for their Grothendieck groups.
引用
收藏
页码:319 / 335
页数:17
相关论文
共 17 条
[1]  
Berenstein A, 2004, CONTEMP MATH, V433, P13
[2]  
Hong J., 2002, GRADUATE STUDIES MAT, V42
[3]   Crystal bases for quantum generalized Kac-Moody algebras [J].
Jeong, K ;
Kang, SJ ;
Kashiwara, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 :395-438
[4]   Abstract Crystals for Quantum Generalized Kac-Moody Algebras [J].
Jeong, Kyeonghoon ;
Kang, Seok-Jin ;
Kashiwara, Masaki ;
Shin, Dong-Uy .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[5]   Geometric realization of Khovanov-Lauda-Rouquier algebras associated with Borcherds-Cartan data [J].
Kang, Seok-Jin ;
Kashiwara, Masaki ;
Park, Euiyong .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :907-931
[6]  
Kang SJ, 2013, MOSC MATH J, V13, P315
[7]   CATEGORIFICATION OF QUANTUM GENERALIZED KAC-MOODY ALGEBRAS AND CRYSTAL BASES [J].
Kang, Seok-Jin ;
Oh, Se-Jin ;
Park, Euiyong .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (11)
[8]   Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras [J].
Kang, Seok-Jin ;
Kashiwara, Masaki .
INVENTIONES MATHEMATICAE, 2012, 190 (03) :699-742
[9]   Perfect Bases for Integrable Modules over Generalized Kac-Moody Algebras [J].
Kang, Seok-Jin ;
Oh, Se-jin ;
Park, Euiyong .
ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (03) :571-587
[10]   GLOBAL CRYSTAL BASES OF QUANTUM GROUPS [J].
KASHIWARA, M .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :455-485