Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control

被引:50
作者
Zheng, Ting-Ting [1 ]
Nie, Lin-Fei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Dengue virus; Two-strain model; Stability; Sensitivity analysis; Optimal control; DISEASE TRANSMISSION; MATHEMATICAL-MODEL; VIRUS-INFECTION; HOST; FEVER;
D O I
10.1016/j.jtbi.2018.01.017
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a mathematical model describing the transmission of two-strain Dengue virus between mosquitoes and humans, incorporating vector control and awareness of susceptible humans, is proposed. By using the next generation matrix method, we obtain the threshold values to identify the existence and stability of three equilibria states, that is, a disease-free state, a state where only one serotype is present and another state where both serotypes coexist. Further, explicit conditions determining the persistence of this disease are also obtained. In addition, we investigate the sensitivity analysis of threshold conditions and the optimal control strategy for this disease. Theoretical results and numerical simulations suggest that the measures of enhancing awareness of the infected and susceptible human self-protection should be taken and the mosquito control measure is necessary in order to prevent the transmission of Dengue virus from mosquitoes to humans. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 25 条
[1]   A Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever [J].
Amaku, Marcos ;
Bezerra Coutinho, Francisco Antonio ;
Raimundo, Silvia Martorano ;
Lopez, Luis Fernandez ;
Burattini, Marcelo Nascimento ;
Massad, Eduardo .
BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (03) :697-717
[2]   The global distribution and burden of dengue [J].
Bhatt, Samir ;
Gething, Peter W. ;
Brady, Oliver J. ;
Messina, Jane P. ;
Farlow, Andrew W. ;
Moyes, Catherine L. ;
Drake, John M. ;
Brownstein, John S. ;
Hoen, Anne G. ;
Sankoh, Osman ;
Myers, Monica F. ;
George, Dylan B. ;
Jaenisch, Thomas ;
Wint, G. R. William ;
Simmons, Cameron P. ;
Scott, Thomas W. ;
Farrar, Jeremy J. ;
Hay, Simon I. .
NATURE, 2013, 496 (7446) :504-507
[3]   OPTIMAL CONTROL OF VECTOR-BORNE DISEASES: TREATMENT AND PREVENTION [J].
Blayneh, Kbenesh ;
Cao, Yanzhao ;
Kwon, Hee-Dae .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03) :587-611
[4]   Global properties of vector-host disease models with time delays [J].
Cai, Li-Ming ;
Li, Xue-Zhi ;
Fang, Bin ;
Ruan, Shigui .
JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (06) :1397-1423
[5]   Global analysis of a vector-host epidemic model with nonlinear incidences [J].
Cai, Li-Ming ;
Li, Xue-Zhi .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) :3531-3541
[6]   Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model [J].
Chitnis, Nakul ;
Hyman, James M. ;
Cushing, Jim M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) :1272-1296
[7]   Dynamics of two-strain influenza model with cross-immunity and no quarantine class [J].
Chung, K. W. ;
Lui, Roger .
JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (6-7) :1467-1489
[8]   Dengue fever: Mathematical modelling and computer simulation [J].
Derouich, M. ;
Boutayeb, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (02) :528-544
[9]   A model for dengue disease with variable human population [J].
Esteva, L ;
Vargas, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (03) :220-240
[10]   Analysis of a Dengue disease transmission model [J].
Esteva, L ;
Vargas, C .
MATHEMATICAL BIOSCIENCES, 1998, 150 (02) :131-151