Nanopositioning for storage applications

被引:24
作者
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
关键词
Probe storage; Tape storage; Voice-coil actuators; Piezoelectric actuators; Nanopositioning; Mechatronics; Feedback control technologies; RECORDING AREAL DENSITY; VIBRATION COMPENSATION; PRECISION; MILLIPEDE; MOTION; MEDIA; SERVO;
D O I
10.1016/j.arcontrol.2012.09.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In nanotechnology applications, nanopositioning, i.e., nanometer-scale precision control at dimensions of less than 100 nm, plays a central role. One can view nanopositioners as precision mechatronics systems aiming at moving objects over a certain distance with a resolution that could be as low as a fraction of an Angstrom. Actuation, position sensing and feedback control are the key components of nanopositioners that determine how successfully the stringent requirements on resolution, accuracy, stability, and bandwidth are achieved. Historically, nanopositioning has played a critical role in scanning probe microscopy (SPM), and it appears that it will play a crucial role in emerging applications such as lithography tools and semiconductor inspection systems, as well as in molecular biology, nanofabrication, and nanomanufacturing. Moreover, it is becoming an important requirement in storage systems, ranging from novel probe-based storage devices to mechatronic tape-drive systems, to support the high areal density or storage capacity needs. This paper will review control-related research in nanopositioning for two extreme cases of data-storage systems, namely, in probe and in tape storage. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:244 / 254
页数:11
相关论文
共 56 条
  • [1] [Anonymous], P 17 ANN ASME INF ST
  • [2] [Anonymous], 1994, SCANNING PROBE MICRO
  • [3] Scaling tape-recording areal densities to 100 Gb/in2
    Argumedo, A. J.
    Berman, D.
    Biskeborn, R. G.
    Cherubini, G.
    Cideciyan, R. D.
    Eleftheriou, E.
    Haeberle, W.
    Hellman, D. J.
    Hutchins, R.
    Imaino, W.
    Jelitto, J.
    Judd, K.
    Jubert, P. -O.
    Lantz, M. A.
    McClelland, G. M.
    Mittelholzer, T.
    Narayan, C.
    Oelcer, S.
    Seger, P. J.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2008, 52 (4-5) : 513 - 527
  • [4] Timing-based track-following servo for linear tape systems
    Barrett, RC
    Klaassen, EH
    Albrecht, TR
    Jaquette, GA
    Eaton, JH
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (04) : 1872 - 1877
  • [5] 6.7 Gb/in2 recording areal density on barium ferrite tape
    Berman, David
    Biskeborn, Robert
    Bui, N.
    Childers, Ed
    Cideciyan, R. D.
    Dyer, W.
    Eleftheriou, Evangelos
    Hellman, Diana
    Hutchins, R.
    Imaino, Wayne
    Jaquette, Glen
    Jelitto, J.
    Jubert, P.-O.
    Lo, C.
    McClelland, G.
    Narayan, S.
    Oelcer, S.
    Topuria, T.
    Harasawa, Takeshi
    Hashimoto, Akihiro
    Nagata, Takeshi
    Ohtsu, Hiroki
    Saito, Shinji
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (08) : 3502 - 3508
  • [6] Bhaskaran H., 2009, P EUR S PHAS CHANG O
  • [7] Hard-disk-drive technology flat heads for linear tape recording
    Biskeborn, RG
    Eaton, JH
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2003, 47 (04) : 385 - 400
  • [8] Bushan B., 2004, SPRINGER HDB NANOTEC
  • [9] Bushan B., 1995, HDB MICRONANOTRIBOLO
  • [10] 29.5-Gb/in2 Recording Areal Density on Barium Ferrite Tape
    Cherubini, Giovanni
    Cideciyan, Roy D.
    Dellmann, Laurent
    Eleftheriou, Evangelos
    Haeberle, Walter
    Jelitto, Jens
    Kartik, Venkataraman
    Lantz, Mark A.
    Oelcer, Sedat
    Pantazi, Angeliki
    Rothuizen, Hugo E.
    Berman, David
    Imaino, Wayne
    Jubert, Pierre-Olivier
    McClelland, Gary
    Koeppe, Peter V.
    Tsuruta, Kazuhiro
    Harasawa, Takeshi
    Murata, Yuto
    Musha, Atsushi
    Noguchi, Hitoshi
    Ohtsu, Hiroki
    Shimizu, Osamu
    Suzuki, Ryota
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (01) : 137 - 147