A denoising scheme for DSPI fringes based on fast bi-dimensional ensemble empirical mode decomposition and BIMF energy estimation

被引:17
作者
Zhou, Yi [1 ]
Li, Hongguang [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Digital speckle pattern interferometry; Speckle noise; Denoising; Fast bi-dimensional ensemble empirical; mode decomposition; BIMF energy estimation; SPECKLE-PATTERN INTERFEROMETRY; WAVELET TRANSFORM; NOISE-REDUCTION; SIGNALS; DEFORMATIONS; FILTER;
D O I
10.1016/j.ymssp.2012.09.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Digital speckle pattern interferometry (DSPI) is a new and efficient technique for measuring the difference in out-of-plane displacement. However, DSPI fringes contain low spatial information degraded with random speckle noise and background intensity. A denoising scheme based on fast bi-dimensional ensemble empirical mode decomposition (FBEEMD) and energy estimation of bi-dimensional intrinsic mode function (BIMF) is proposed to reduce speckle noise in this paper. Furthermore, the denoising scheme is compared with other denoising methods, and evaluated quantitatively using computer-simulated and experimental DSPI fringes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 41 条
  • [21] Application of the EEMD method to rotor fault diagnosis of rotating machinery
    Lei, Yaguo
    He, Zhengjia
    Zi, Yanyang
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (04) : 1327 - 1338
  • [22] Leissa A. W., 1977, SHOCK VIB DIG, V9, P13, DOI DOI 10.1177/058310247700901005
  • [23] FREE VIBRATION OF RECTANGULAR-PLATES
    LEISSA, AW
    [J]. JOURNAL OF SOUND AND VIBRATION, 1973, 31 (03) : 257 - 293
  • [24] Wavelet Transform-based Higher-order Statistics for Fault Diagnosis in Rolling Element Bearings
    Li, Fucai
    Meng, Guang
    Ye, Lin
    Chen, Peng
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (11) : 1691 - 1709
  • [25] Detection of harmonic signals from chaotic interference by empirical mode decomposition
    Li, H. G.
    Meng, G.
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 930 - 935
  • [26] Variable sampling of the empirical mode decomposition of two-dimensional signals
    Linderhed, A
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2005, 3 (03) : 435 - 452
  • [27] Boundary processing of bidimensional EMD using texture synthesis
    Liu, ZX
    Peng, SL
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (01) : 33 - 36
  • [28] Loizou C, 2002, DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, P525, DOI 10.1109/ICDSP.2002.1028143
  • [29] TIME-AVERAGE SUBTRACTION METHOD IN ELECTRONIC SPECKLE PATTERN INTERFEROMETRY
    LU, BX
    YANG, XY
    ABENDROTH, H
    EGGERS, H
    [J]. OPTICS COMMUNICATIONS, 1989, 70 (03) : 177 - 180
  • [30] Texture analysis based on local analysis of the bidimensional empirical mode decomposition
    Nunes, J
    Guyot, S
    Deléchelle, E
    [J]. MACHINE VISION AND APPLICATIONS, 2005, 16 (03) : 177 - 188