Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features

被引:86
作者
Park, S. [1 ]
Chu, L. C. [1 ]
Hruban, R. H. [2 ,3 ]
Vogelstein, B. [3 ,4 ,5 ]
Kinzler, K. W. [3 ,4 ]
Yuille, A. L. [6 ,7 ]
Fouladi, D. F. [1 ]
Shayesteh, S. [1 ]
Ghandili, S. [1 ]
Wolfgang, C. L. [8 ]
Burkhart, R. [8 ]
He, J. [8 ]
Fishman, E. K. [1 ]
Kawamoto, S. [1 ]
机构
[1] Johns Hopkins Univ, Russell H Morgan Dept Radiol & Radiol Sci, Sch Med, JHOC 3140E,601N Caroline St, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Sol Goldman Pancreat Canc Res Ctr, Sch Med, Dept Pathol, Baltimore, MD 21287 USA
[3] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Ludwig Ctr Canc Genet & Therapeut, Sch Med, Baltimore, MD 21231 USA
[5] Johns Hopkins Univ, Sch Med, Baltimore, MD 21231 USA
[6] Johns Hopkins Univ, Sch Arts & Sci, Dept Comp Sci, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Sch Arts & Sci, Dept Cognit Sci, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Sch Med, Dept Surg, Baltimore, MD 21287 USA
关键词
Radiomics; Texture analysis; Autoimmune pancreatitis; Pancreatic ductal carcinoma; Computed tomography (CT); LYMPHOPLASMACYTIC SCLEROSING PANCREATITIS; COMPUTED-TOMOGRAPHY; TEXTURE ANALYSIS; CARCINOMA; DIAGNOSIS; CRITERIA;
D O I
10.1016/j.diii.2020.03.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study was to determine whether computed tomography (CT)-based machine learning of radiomics features could help distinguish autoimmune pancreatitis (AIP) from pancreatic ductal adenocarcinoma (PDAC). Materials and Methods: Eighty-nine patients with AIP (65 men, 24 women; mean age, 59.7 +/- 13.9 [SD] years; range: 21-83 years) and 93 patients with PDAC (68 men, 25 women; mean age, 60.1 +/- 12.3 [SD] years; range: 36-86 years) were retrospectively included. All patients had dedicated dual-phase pancreatic protocol CT between 2004 and 2018. Thin-slice images (0.75/0.5 mm thickness/increment) were compared with thick-slices images (3 or 5 mm thickness/increment). Pancreatic regions involved by PDAC or AIP (areas of enlargement, altered enhancement, effacement of pancreatic duct) as well as uninvolved parenchyma were segmented as three-dimensional volumes. Four hundred and thirty-one radiomics features were extracted and a random forest was used to distinguish AIP from PDAC. CT data of 60 AIP and 60 PDAC patients were used for training and those of 29 AIP and 33 PDAC independent patients were used for testing. Results: The pancreas was diffusely involved in 37 (37/89; 41.6%) patients with AIP and not diffusely in 52 (52/89; 58.4%) patients. Using machine learning, 95.2% (59/62; 95% confidence interval [CI]: 89.8-100%), 83.9% (52:67; 95% CI: 74.7-93.0%) and 77.4% (48/62; 95% CI: 67.0-87.8%) of the 62 test patients were correctly classified as either having PDAC or AIP with thin-slice venous phase, thin-slice arterial phase, and thick-slice venous phase CT, respectively. Three of the 29 patients with AIP (3/29; 10.3%) were incorrectly classified as having PDAC but all 33 patients with PDAC (33/33; 100%) were correctly classified with thin-slice venous phase with 89.7% sensitivity (26/29; 95% CI: 78.6-100%) and 100% specificity (33/33; 95% CI: 93-100%) for the diagnosis of AIP, 95.2% accuracy (59/62; 95% CI: 89.8-100%) and area under the curve of 0.975 (95% CI: 0.936-1.0). Conclusions: Radiomic features help differentiate AIP from PDAC with an overall accuracy of 95.2%. (C) 2020 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:555 / 564
页数:10
相关论文
共 34 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest [J].
Akai, H. ;
Yasaka, K. ;
Kunimatsu, A. ;
Nojima, M. ;
Kokudo, T. ;
Kokudo, N. ;
Hasegawa, K. ;
Abe, O. ;
Ohtomo, K. ;
Kiryu, S. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2018, 99 (10) :643-651
[3]   Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis [J].
Canellas, Rodrigo ;
Burk, Kristine S. ;
Parakh, Anushri ;
Sahani, Dushyant V. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (02) :341-346
[4]   CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas [J].
Chakraborty, Jayasree ;
Midya, Abhishek ;
Gazit, Lior ;
Attiyeh, Marc ;
Langdon-Embry, Liana ;
Allen, Peter J. ;
Do, Richard K. G. ;
Simpson, Amber L. .
MEDICAL PHYSICS, 2018, 45 (11) :5019-5029
[5]   Diagnosis of autoimmune pancreatitis: The Mayo Clinic experience [J].
Chari, Suresh T. ;
Smyrk, Thomas C. ;
Levy, Michael J. ;
Topazian, Mark D. ;
Takahashi, Naoki ;
Zhang, Lizhi ;
Clain, Jonathan E. ;
Pearson, Randall K. ;
Petersen, Bret T. ;
Vege, Santhi Swaroop ;
Farnell, Michael B. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2006, 4 (08) :1010-1016
[6]   A Diagnostic Strategy to Distinguish Autoimmune Pancreatitis From Pancreatic Cancer [J].
Chari, Suresh T. ;
Takahashi, Naoki ;
Levy, Michael J. ;
Smyrk, Thomas C. ;
Clain, Jonathan E. ;
Pearson, Randall K. ;
Petersen, Bret T. ;
Topazian, Mark A. ;
Vege, Santhi S. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2009, 7 (10) :1097-1103
[7]   Clinical Utility of FDG PET/CT in Patients with Autoimmune Pancreatitis: a Case-Control Study [J].
Cheng, Mei-Fang ;
Guo, Yue Leon ;
Yen, Ruoh-Fang ;
Chen, Yi-Chieh ;
Ko, Chi-Lun ;
Tien, Yu-Wen ;
Liao, Wei-Chih ;
Liu, Chia-Ju ;
Wu, Yen-Wen ;
Wang, Hsiu-Po .
SCIENTIFIC REPORTS, 2018, 8
[8]   Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis [J].
Choi, Tae Won ;
Kim, Jung Hoon ;
Yu, Mi Hye ;
Park, Sang Joon ;
Han, Joon Koo .
ACTA RADIOLOGICA, 2018, 59 (04) :383-392
[9]   Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue [J].
Chu, Linda C. ;
Park, Seyoun ;
Kawamoto, Satomi ;
Fouladi, Daniel F. ;
Shayesteh, Shahab ;
Zinreich, Eva S. ;
Graves, Jefferson S. ;
Horton, Karen M. ;
Hruban, Ralph H. ;
Yuille, Alan L. ;
Kinzler, Kenneth W. ;
Vogelstein, Bert ;
Fishman, Elliot K. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (02) :349-357
[10]   CT Texture Analysis of Ductal Adenocarcinoma Downstaged After Chemotherapy [J].
Ciaravino, Valentina ;
Cardobi, Nicolo ;
de Robertis, Riccardo ;
Capelli, Paola ;
Melisi, Davide ;
Simionato, Francesca ;
Marchegiani, Giovanni ;
Salvia, Roberto ;
D'onofrio, Mirk .
ANTICANCER RESEARCH, 2018, 38 (08) :4889-4895