A new belief-based K-nearest neighbor classification method

被引:135
|
作者
Liu, Zhun-ga [1 ]
Pan, Quan [1 ]
Dezert, Jean [2 ]
机构
[1] NW Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] ONERA French Aerosp Lab, F-91761 Palaiseau, France
关键词
K-nearest neighbor; Data classification; Belief functions; DST; Credal classification; C-MEANS ALGORITHM; FUNCTIONS FRAMEWORK; PROXIMITY DATA; MODEL; COMBINATION; RULE;
D O I
10.1016/j.patcog.2012.10.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-nearest neighbor (K-NN) classification method originally developed in the probabilistic framework has serious difficulties to classify correctly the close data points (objects) originating from different classes. To cope with such difficult problem and make the classification result more robust to misclassification errors, we propose a new belief-based K-nearest neighbor (BK-NN) method that allows each object to belong both to the specific classes and to the sets of classes with different masses of belief. BK-NN is able to provide a hyper-credal classification on the specific classes, the rejection classes and the meta-classes as well. Thus, the objects hard to classify correctly are automatically committed to a meta-class or to a rejection class, which can reduce the misclassification errors. The basic belief assignment (bba) of each object is defined from the distance between the object and its neighbors and from the acceptance and rejection thresholds. The bba's are combined using a new combination method specially developed for the BK-NN. Several experiments based on simulated and real data sets have been carried out to evaluate the performances of the BK-NN method with respect to several classical K-NN approaches. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:834 / 844
页数:11
相关论文
共 50 条
  • [11] A Centroid k-Nearest Neighbor Method
    Zhang, Qingjiu
    Sun, Shiliang
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2010, PT I, 2010, 6440 : 278 - 285
  • [12] Joint Evidential K-Nearest Neighbor Classification
    Gong, Chaoyu
    Li, Yongbin
    Liu, Yong
    Wang, Pei-hong
    You, Yang
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 2113 - 2126
  • [14] Multiview Adaptive K-Nearest Neighbor Classification
    School of Science, East China Jiaotong University, Nanchang
    330013, China
    不详
    330013, China
    不详
    IEEE. Trans. Artif. Intell., 2024, 3 (1221-1234): : 1221 - 1234
  • [15] Privacy preserving K-nearest neighbor classification
    Zhan, Justin
    Chang, Li Wu
    Matwin, Stan
    International Journal of Network Security, 2005, 1 (01) : 46 - 51
  • [16] wSparse Coefficient-Based k-Nearest Neighbor Classification
    Ma, Hongxing
    Gou, Jianping
    Wang, Xili
    Ke, Jia
    Zeng, Shaoning
    IEEE ACCESS, 2017, 5 : 16618 - 16634
  • [17] An Enhanced K-Nearest Neighbor Classification Method Based on Maximal Coherence and Validity Ratings
    Zhang, Nian
    Xiong, Jiang
    Zhong, Jing
    Thompson, Lara
    Ying, Hong
    ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 206 - 214
  • [18] Emotion Classification in Song Lyrics Using K-Nearest Neighbor Method
    Ferdinan, Afif Hijra
    Osmond, Andrew Brian
    Setianingsih, Casi
    2018 INTERNATIONAL CONFERENCE ON CONTROL, ELECTRONICS, RENEWABLE ENERGY AND COMMUNICATIONS (ICCEREC), 2018, : 63 - 69
  • [19] Fish Freshness Classification Method Based on Fish Image using k-Nearest Neighbor
    Iswari, Ni Made Satvika
    Wella
    Ranny
    PROCEEDINGS OF 2017 4TH INTERNATIONAL CONFERENCE ON NEW MEDIA STUDIES (CONMEDIA 2017), 2017, : 87 - 91
  • [20] A novel template reduction K-nearest neighbor classification method based on weighted distance
    Yang J.-F.
    Song M.
    Li M.-A.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2011, 33 (10): : 2378 - 2383