PROPER HOLOMORPHIC MAPPINGS BETWEEN INVARIANT DOMAINS IN Cn

被引:11
作者
Ning, Jiafu [1 ]
Zhang, Huiping [2 ]
Zhou, Xiangyu [3 ,4 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Renmin Univ China, Informat Sch, Dept Math, Beijing 100872, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
STEIN-SPACES; PSEUDOCONVEX DOMAINS; BOUNDARY-REGULARITY; CIRCULAR DOMAINS; AUTOMORPHISMS; CORRESPONDENCES; RIGIDITY; BEHAVIOR; IMAGES;
D O I
10.1090/tran/6690
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we prove the following result generalizing some well-known related results about biholomorphic or proper holomorphic mappings between some special domains in C-n. Let G(1) and G(2) be two compact Lie groups, which act linearly on C-n with O(C-n)(Gj) = C for j = 1, 2. Let 0. Oj be bounded Gj -invariant domains in C-n for j = 1, 2. If f : Omega(1) -> Omega(2) is a proper holomorphic mapping, then f extends holomorphically to an open neighborhood of (Omega) over bar (1), and in addition if f(-1)(0) = {0}, then f is a polynomial mapping. We also prove that if 0 is an element of Omega is a G(1)-invariant pseudoconvex domain in C-n with O(C-n)(G1) = C, then Omega is orbit convex. The second result is used to prove the first one.
引用
收藏
页码:517 / 536
页数:20
相关论文
共 39 条
[1]  
Barrett David E., 1981, MATH ANN, V258, P441, DOI [10.1007/BF01453977, DOI 10.1007/BF01453977]
[2]   PROPER HOLOMORPHIC MAPPINGS [J].
BEDFORD, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 10 (02) :157-175
[3]   BOUNDARY-BEHAVIOR OF PROPER HOLOMORPHIC CORRESPONDENCES [J].
BEDFORD, E ;
BELL, S .
MATHEMATISCHE ANNALEN, 1985, 272 (04) :505-518
[5]   PROPER HOLOMORPHIC CORRESPONDENCES BETWEEN CIRCULAR DOMAINS [J].
BELL, S .
MATHEMATISCHE ANNALEN, 1985, 270 (03) :393-400
[6]   BOUNDARY-REGULARITY OF PROPER HOLOMORPHIC MAPPINGS [J].
BELL, S ;
CATLIN, D .
DUKE MATHEMATICAL JOURNAL, 1982, 49 (02) :385-396
[7]  
Bell Steven R., 1990, ENCYCL MATH SCI, V69, P1
[8]  
Bell Steven R., 1981, DUKE MATH J, V48, P167
[9]  
Bell Steven R., 1982, T AM MATH SOC, V270, P685, DOI [10.2307/1999869, DOI 10.2307/1999869]
[10]  
Cartan H., 1931, J MATH PURE APPL, V96, P1