Non-Enzymatic Amperometric Sensing of Hydrogen Peroxide Based on Vanadium Pentoxide Nanostructures

被引:97
|
作者
Ghanei-Motlagh, Masoud [1 ,2 ]
Taher, Mohammad Ali [1 ]
Fayazi, Maryam [3 ]
Baghayeri, Mehdi [4 ]
Hosseinifar, AbduRahman [5 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Sci, Dept Chem, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Young Researchers Soc, Kerman, Iran
[3] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Environm, Kerman, Iran
[4] Hakim Sabzevari Univ, Dept Chem, Sabzevar, Iran
[5] Univ Tehran, Coll Engn, Sch Chem Engn, TPNT, Tehran 111554563, Iran
关键词
ELECTROCHEMICAL DETECTION; CATHODE MATERIAL; OXIDE NANOPARTICLES; V2O5; SENSOR; PERFORMANCE; NANOCOMPOSITE; ELECTRODE; CARBON; H2O2;
D O I
10.1149/2.0521906jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, a simple and selective electrochemical sensor was proposed for non-enzymatic determination of hydrogen peroxide (H2O2). This sensor was fabricated by incorporation of the novel nanostructured orthorhombic vanadium pentoxide (V2O5) into the carbon paste electrode (CPE) which provides significant catalytic activities for H2O2 reduction. The electrochemical impedance spectroscopy (EIS) studies illustrated lower charge transfer resistance (R-ct) of the V2O5 modified CPE compared to the unmodified CPE. The effects of various experimental factors such as solution pH, applied potential and amount of modifier were studied in an amperometric mode. After optimization, the proposed method displayed a wide linear detection range from 5.0 to 1400.0 mu M with a low detection limit of 2.5 mu M based S/N = 3 and a response time less than 5 s. The sensitivity of 3.44 mu A mu M-1 cm(-2) was acquired in the present method for H2O2 quantification is considerably better than other reported amperometric sensors with similar detection limits. In addition, the designed sensor depicted good reproducibility, remarkable selectivity, and excellent stability. The modified CPE was applicable for analysis of H2O2 in some cosmetic and personal care products. (C) 2019 The Electrochemical Society.
引用
收藏
页码:B367 / B372
页数:6
相关论文
共 50 条
  • [1] Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing
    Gao, Peng
    Liu, Dawei
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 208 : 346 - 354
  • [2] Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing
    Zhang, Li
    Li, Hua
    Ni, Yonghong
    Li, Jun
    Liao, Kaiming
    Zhao, Guangchao
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) : 812 - 815
  • [3] Hydrothermal preparation of nest-like CuO nanostructures for non-enzymatic amperometric detection of hydrogen peroxide
    Gao, Peng
    Liu, Dawei
    RSC ADVANCES, 2015, 5 (31): : 24625 - 24634
  • [4] A hollow CuOx/NiOy nanocomposite for amperometric and non-enzymatic sensing of glucose and hydrogen peroxide
    Long, Ling
    Liu, Xiangjian
    Chen, Lulu
    Li, Dandan
    Jia, Jianbo
    MICROCHIMICA ACTA, 2019, 186 (02)
  • [5] Non-enzymatic electrochemical sensing of hydrogen peroxide based on polypyrrole/platinum nanocomposites
    Xing, Liwen
    Rong, Qinfeng
    Ma, Zhanfang
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 221 : 242 - 247
  • [6] Graphene oxide directed in-situ synthesis of Prussian blue for non-enzymatic sensing of hydrogen peroxide released from macrophages
    Qiu, Weiwei
    Zhu, Qionghua
    Gao, Fei
    Gao, Feng
    Huang, Jiafu
    Pan, Yutian
    Wang, Qingxiang
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 692 - 700
  • [7] A Non-enzymatic Hydrogen Peroxide Sensor with Enhanced Sensitivity Based on Pt Nanoparticles
    Awais, Azka
    Arsalan, Muhammad
    Sheng, Qinglin
    Yue, Tianli
    ANALYTICAL SCIENCES, 2021, 37 (10) : 1419 - 1426
  • [8] Facile construction of an Ag/MoSe2 composite based non-enzymatic amperometric sensor for hydrogen peroxide
    Tian, Ran
    Li, Dong
    Zhou, Tao
    Chu, Xue-Qiang
    Ge, Danhua
    Chen, Xiaojun
    DALTON TRANSACTIONS, 2022, 51 (13) : 5271 - 5277
  • [9] Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide
    Gao, Peng
    Liu, Dawei
    MICROCHIMICA ACTA, 2015, 182 (7-8) : 1231 - 1239
  • [10] Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide
    Ngamaroonchote, Aroonsri
    Sanguansap, Yanisa
    Wutikhun, Tuksadon
    Karn-orachai, Kullavadee
    MICROCHIMICA ACTA, 2020, 187 (10)