A numerical method for kinetic semiconductor equations in the drift-diffusion limit

被引:32
作者
Klar, A
机构
[1] Fb. Mathematik und Informatik, FU Berlin
关键词
kinetic semiconductor equations; asymptotic analysis; drift-diffusion limit; numerical methods for stiff equations;
D O I
10.1137/S1064827597319258
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An asymptotic-induced scheme for kinetic semiconductor equations with the diffusion scaling is developed. The scheme is based on the asymptotic analysis of the kinetic semiconductor equation. It works uniformly for all ranges of mean free paths. The velocity discretization is done using quadrature points equivalent to a moment expansion method. Numerical results for different physical situations are presented.
引用
收藏
页码:1696 / 1712
页数:17
相关论文
共 25 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Atkinson K.E., 1976, SURVEY NUMERICAL MET
[3]  
BENSOUSSAN A, 1979, PUBL RES I MATH SCI, V15, P52
[4]  
Bobylev A. V., 1996, Transport Theory and Statistical Physics, V25, P175, DOI 10.1080/00411459608204835
[5]   Uniformly accurate schemes for hyperbolic systems with relaxation [J].
Caflisch, RE ;
Jin, S ;
Russo, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :246-281
[6]   2-DIMENSIONAL MOSFET SIMULATION BY MEANS OF A MULTIDIMENSIONAL SPHERICAL-HARMONICS EXPANSION OF THE BOLTZMANN TRANSPORT-EQUATION [J].
GNUDI, A ;
VENTURA, D ;
BACCARANI, G ;
ODEH, F .
SOLID-STATE ELECTRONICS, 1993, 36 (04) :575-581
[7]   A NUMERICAL-METHOD FOR COMPUTING ASYMPTOTIC STATES AND OUTGOING DISTRIBUTIONS FOR KINETIC LINEAR HALF-SPACE PROBLEMS [J].
GOLSE, F ;
KLAR, A .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (5-6) :1033-1061
[8]  
HACKBUSCH W, 1989, LEITFADEN ANGEW MATH, V68
[9]   DETERMINISTIC MOSFET SIMULATION USING A GENERALIZED SPHERICAL HARMONIC EXPANSION OF THE BOLTZMANN-EQUATION [J].
HENNACY, KA ;
WU, YJ ;
GOLDSMAN, N ;
MAYERGOYZ, ID .
SOLID-STATE ELECTRONICS, 1995, 38 (08) :1485-1495
[10]   Numerical schemes for hyperbolic conservation laws with stiff relaxation terms [J].
Jin, S ;
Levermore, CD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :449-467