2-Cancellative Hypergraphs and Codes

被引:5
作者
Fueredi, Zoltan [1 ,2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
基金
美国国家科学基金会;
关键词
ASYMPTOTIC SOLUTION; TURAN PROBLEM; FINITE SETS; NO SET; BOUNDS; FAMILIES; SYSTEMS; NUMBER; BROWN; UNION;
D O I
10.1017/S0963548311000563
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A family of sets F (and the corresponding family of 0-1 vectors) is called t-cancellative if, for all distinct t + 2 members A(1), ... , A(t) and B, C is an element of F, A(1) boolean OR ... boolean OR A(t) boolean OR B not equal A(1) boolean OR ... boolean OR A(t) boolean OR C. Let c(t)(n) be the size of the largest t-cancellative family on n elements, and let c(t)(n, r) denote the largest r-uniform family. We improve the previous upper bounds, e. g., we show c(2)(n) <= 2(0.322n) (for n > n(0)). Using an algebraic construction we show that c(2)(n, 2k) = Theta(n(k)) for each k when n -> infinity.
引用
收藏
页码:159 / 177
页数:19
相关论文
共 46 条
  • [1] Locally thin set families
    Alon, N
    Fachini, E
    Körner, J
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (06) : 481 - 488
  • [2] String quartets in binary
    Alon, N
    Körner, J
    Monti, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (05) : 381 - 390
  • [3] On an extremal hypergraph problem of Brown, Erdos and Sos
    Alon, Noga
    Shapira, Asaf
    [J]. COMBINATORICA, 2006, 26 (06) : 627 - 645
  • [4] Tracing a single user
    Alon, Noga
    Asodi, Vera
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (08) : 1227 - 1234
  • [5] [Anonymous], ELECT J COMBIN
  • [6] [Anonymous], 1984, EUR J COMBIN
  • [7] [Anonymous], ELECT J COMBIN
  • [8] [Anonymous], ARXIV11031691MATHC0
  • [9] [Anonymous], P 2 INT C GRAPH THEO
  • [10] [Anonymous], MATH CTR TRACTS