Evaluation of the biocompatibility of two magnesium alloys as degradable implant materials in comparison to titanium as non-resorbable material in the rabbit

被引:40
作者
Hampp, Carolin [1 ]
Angrisani, Nina [1 ]
Reifenrath, Janin [1 ]
Bormann, Dirk [2 ]
Seitz, Jan-Marten [2 ]
Meyer-Lindenberg, Andrea [1 ]
机构
[1] Univ Vet Med Hanover, Small Anim Clin, D-30559 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Mat Sci, D-30823 Garbsen, Germany
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2013年 / 33卷 / 01期
关键词
Magnesium alloy; Titanium; Rare earth; Biodegradation; In vivo; mu CT; IN-VIVO CORROSION; MECHANICAL-PROPERTIES; ACID-PHOSPHATASE; STAINLESS-STEEL; BONE; BEHAVIOR; MGCA0.8; MODEL; CA; BIOMATERIALS;
D O I
10.1016/j.msec.2012.08.046
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The aim of this study is to compare the biocompatibility of the two magnesium based alloys LAE442 and LANd442 with that of titanium. For this purpose, cylindrical implants were introduced into the medullary cavity of rabbit's tibiae for 4 and 8 weeks. Animals without any implant served as a control. In the follow-up, clinical. X-ray and mu CT-investigations were performed to evaluate the reactions of the bone towards the implanted materials. After euthanasia, ex vivo mu CT- and histological investigations were performed to verify the results of the in vivo tests. It could be shown that all materials induce changes in the bone. Whereas LANd442 caused the most pronounced reactions, such as increasing bone volume and bone porosity and decreasing bone density, titanium showed the most bone-implant contact by forming trabeculae. The tibiae of rabbits without implants also reacted by forming cavities, it is therefore assumed that the surgery method itself influences the bone. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 50 条
[1]   Corrosion mechanism applicable to biodegradable magnesium implants [J].
Atrens, Andrej ;
Liu, Ming ;
Abidin, Nor Ishida Zainal .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (20) :1609-1636
[2]   Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes [J].
Bala, Yohann ;
Farlay, Delphine ;
Delmas, Pierre D. ;
Meunier, Pierre J. ;
Boivin, Georges .
BONE, 2010, 46 (04) :1204-1212
[3]  
Bernhardt R, 2004, Eur Cell Mater, V7, P42
[4]  
D K., 1988, Der Praparator, P197
[5]  
Danckwardt-Lilliestrom G, 1969, Acta Orthop Scand Suppl, V128, P1
[6]  
Disegi JA, 2000, INJURY, V31, pS2
[7]   Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: Part I, inorganic modification [J].
Ferraris, S. ;
Spriano, S. ;
Pan, G. ;
Venturello, A. ;
Bianchi, C. L. ;
Chiesa, R. ;
Faga, M. G. ;
Maina, G. ;
Verne, E. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (03) :533-545
[8]   In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared micro spectroscopy [J].
Fuchs, Robyn K. ;
Allen, Matt R. ;
Ruppel, Meghan E. ;
Diab, Tamim ;
Phipps, Roger J. ;
Miller, Lisa M. ;
Burr, David B. .
MATRIX BIOLOGY, 2008, 27 (01) :34-41
[9]   Research on the Biocompatibility of the New Magnesium Alloy LANd442-An In Vivo Study in the Rabbit Tibia over 26 Weeks [J].
Hampp, Carolin ;
Ullmann, Berit ;
Reifenrath, Janin ;
Angrisani, Nina ;
Dziuba, Dina ;
Bormann, Dirk ;
Seitz, Jan-Marten ;
Meyer-Lindenberg, Andrea .
ADVANCED ENGINEERING MATERIALS, 2012, 14 (03) :B28-B37
[10]   Magnesium alloys as implant materials - Principles of property design for Mg-RE alloys [J].
Hort, N. ;
Huang, Y. ;
Fechner, D. ;
Stoermer, M. ;
Blawert, C. ;
Witte, F. ;
Vogt, C. ;
Druecker, H. ;
Willumeit, R. ;
Kainer, K. U. ;
Feyerabend, F. .
ACTA BIOMATERIALIA, 2010, 6 (05) :1714-1725