Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data

被引:48
作者
Widera, Pawel [1 ]
Welsing, Paco M. J. [2 ]
Ladel, Christoph [3 ]
Loughlin, John [4 ]
Lafeber, Floris P. F. J. [2 ]
Dop, Florence Petit [5 ]
Larkin, Jonathan [6 ]
Weinans, Harrie [7 ,8 ]
Mobasheri, Ali [9 ,10 ,11 ]
Bacardit, Jaume [1 ]
机构
[1] Newcastle Univ, Sch Comp Sci, 1 Sci Sq, Newcastle Upon Tyne NE4 5TG, Tyne & Wear, England
[2] Univ Med Ctr Utrecht, Dept Rheumatol & Clin Immunol, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[3] Merck, Frankfurter Str 250, D-64293 Darmstadt, Germany
[4] Newcastle Univ, Int Ctr Life, Biosci Inst, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, England
[5] Inst Rech Int Servier, Immunoinflammat Ctr Therapeut Innovat, Suresnes, France
[6] GlaxoSmithKline, Novel Human Genet Res Unit, Collegeville, PA 19426 USA
[7] Univ Med Ctr Utrecht, Dept Orthoped, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[8] Delft Univ Technol, Dept Biomech Engn, Mekelweg 2, NL-2628 CD Delft, Netherlands
[9] Ctr Innovat Med, Dept Regenerat Med, State Res Inst, Santariskiu 5, LT-08661 Vilnius, Lithuania
[10] Univ Oulu, Res Unit Med Imaging Phys & Technol, Aapistie 5A, FIN-90230 Oulu, Finland
[11] Queens Med Ctr, Ctr Sport Exercise & Osteoarthrit Res Versus Arth, Nottingham NG7 2UH, England
关键词
RADIOGRAPHIC FEATURES; BIOMARKERS; STATE; AREA; HIP;
D O I
10.1038/s41598-020-64643-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional inclusion criteria used in osteoarthritis clinical trials are not very effective in selecting patients who would benefit from a therapy being tested. Typically majority of selected patients show no or limited disease progression during a trial period. As a consequence, the effect of the tested treatment cannot be observed, and the efforts and resources invested in running the trial are not rewarded. This could be avoided, if selection criteria were more predictive of the future disease progression. In this article, we formulated the patient selection problem as a multi-class classification task, with classes based on clinically relevant measures of progression (over a time scale typical for clinical trials). Using data from two long-term knee osteoarthritis studies OAI and CHECK, we tested multiple algorithms and learning process configurations (including multi-classifier approaches, cost-sensitive learning, and feature selection), to identify the best performing machine learning models. We examined the behaviour of the best models, with respect to prediction errors and the impact of used features, to confirm their clinical relevance. We found that the model-based selection outperforms the conventional inclusion criteria, reducing by 20-25% the number of patients who show no progression. This result might lead to more efficient clinical trials.
引用
收藏
页数:15
相关论文
共 45 条
[1]   DEVELOPMENT OF CRITERIA FOR THE CLASSIFICATION AND REPORTING OF OSTEOARTHRITIS - CLASSIFICATION OF OSTEOARTHRITIS OF THE KNEE [J].
ALTMAN, R ;
ASCH, E ;
BLOCH, D ;
BOLE, G ;
BORENSTEIN, D ;
BRANDT, K ;
CHRISTY, W ;
COOKE, TD ;
GREENWALD, R ;
HOCHBERG, M ;
HOWELL, D ;
KAPLAN, D ;
KOOPMAN, W ;
LONGLEY, S ;
MANKIN, H ;
MCSHANE, DJ ;
MEDSGER, T ;
MEENAN, R ;
MIKKELSEN, W ;
MOSKOWITZ, R ;
MURPHY, W ;
ROTHSCHILD, B ;
SEGAL, M ;
SOKOLOFF, L ;
WOLFE, F .
ARTHRITIS AND RHEUMATISM, 1986, 29 (08) :1039-1049
[2]  
[Anonymous], 2007, tech. rep.
[3]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[4]  
Bellamy N, 2002, J RHEUMATOL, V29, P2473
[5]   Beyond authorship: attribution, contribution, collaboration, and credit [J].
Brand, Amy ;
Allen, Liz ;
Altman, Micah ;
Hlava, Marjorie ;
Scott, Jo .
LEARNED PUBLISHING, 2015, 28 (02) :151-155
[6]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[7]  
Chen C., 2004, Tech. Rep
[8]   The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study [J].
Cross, Marita ;
Smith, Emma ;
Hoy, Damian ;
Nolte, Sandra ;
Ackerman, Ilana ;
Fransen, Marlene ;
Bridgett, Lisa ;
Williams, Sean ;
Guillemin, Francis ;
Hill, Catherine L. ;
Laslett, Laura L. ;
Jones, Graeme ;
Cicuttini, Flavia M. ;
Osborne, Richard ;
Vos, Theo ;
Buchbinder, Rachelle ;
Woolf, Anthony ;
March, Lyn .
ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) :1323-1330
[9]   Cartilage Thickness Change as an Imaging Biomarker of Knee Osteoarthritis Progression: Data From the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium [J].
Eckstein, F. ;
Collins, J. E. ;
Nevitt, M. C. ;
Lynch, J. A. ;
Kraus, V. B. ;
Katz, J. N. ;
Losina, E. ;
Wirth, W. ;
Guermazi, A. ;
Roemer, F. W. ;
Hunter, D. J. .
ARTHRITIS & RHEUMATOLOGY, 2015, 67 (12) :3184-3189
[10]   Imaging research results from the Osteoarthritis Initiative (OAI): a review and lessons learned 10 years after start of enrolment [J].
Eckstein, Felix ;
Kwoh, C. Kent ;
Link, Thomas M. .
ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) :1289-1300