Improving GWAS discovery and genomic prediction accuracy in biobank data

被引:13
|
作者
Orliac, Etienne J. [1 ]
Banos, Daniel Trejo [2 ]
Ojavee, Sven E. [3 ]
Lall, Kristi [4 ]
Magi, Reedik [4 ]
Visscher, Peter M. [5 ]
Robinson, Matthew R. [6 ]
机构
[1] Univ Lausanne, Sci Comp & Res Support Unit, CH-1015 Lausanne, Switzerland
[2] Univ Zurich, Dept Quantitat Biomed, CH-8057 Zurich, Switzerland
[3] Univ Lausanne, Dept Computat Biol, CH-1015 Lausanne, Switzerland
[4] Univ Tartu, Inst Genom, Estonian Genome Ctr, EE-51010 Tartu, Estonia
[5] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[6] IST Austria, A-3400 Klosterneuburg, Austria
基金
瑞士国家科学基金会; 澳大利亚研究理事会; 英国医学研究理事会;
关键词
genomic prediction; association study; Bayesian penalized regression; RESOURCE;
D O I
10.1073/pnas.2121279119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetically informed, deep-phenotyped biobanks are an important research resource and it is imperative that the most powerful, versatile, and efficient analysis approaches are used. Here, we apply our recently developed Bayesian grouped mixture of regressions model (GMRM) in the UK and Estonian Biobanks and obtain the highest genomic prediction accuracy reported to date across 21 heritable traits. When compared to other approaches, GMRM accuracy was greater than annotation prediction models run in the LDAK or LDPred-funct software by 15% (SE 7%) and 14% (SE 2%), respectively, and was 18% (SE 3%) greater than a baseline BayesR model without single-nucleotide polymorphism (SNP) markers grouped into minor allele frequency-linkage disequilibrium (MAF-LD) annotation categories. For height, the prediction accuracy R-2 was 47% in a UK Biobank holdout sample, which was 76% of the estimated h(2) SNP. We then extend our GMRM prediction model to provide mixed-linear model association (MLMA) SNP marker estimates for genome-wide association (GWAS) discovery, which increased the independent loci detected to 16,162 in unrelated UK Biobank individuals, compared to 10,550 from BoltLMM and 10,095 from Regenie, a 62 and 65% increase, respectively. Theaverage chi(2) value of the leading markers increased by 15.24 (SE 0.41) for every 1% increase in prediction accuracy gained over a baseline BayesR model across the traits. Thus, we show that modeling genetic associations accounting for MAF and LD differences among SNP markers, and incorporating prior knowledge of genomic function, is important for both genomic prediction and discovery in large-scale individual-level studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Improving wheat grain yield genomic prediction accuracy using historical data
    Vitale, Paolo
    Montesinos-Lopez, Osval
    Gerard, Guillermo
    Velu, Govindan
    Tadesse, Zerihun
    Montesinos-Lopez, Abelardo
    Dreisigacker, Susanne
    Pacheco, Angela
    Toledo, Fernando
    Saint Pierre, Carolina
    Perez-Rodriguez, Paulino
    Gardner, Keith
    Crespo-Herrera, Leonardo
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2025, 15 (04):
  • [2] Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs
    Zhanwei Zhuang
    Jie Wu
    Yibin Qiu
    Donglin Ruan
    Rongrong Ding
    Cineng Xu
    Shenping Zhou
    Yuling Zhang
    Yiyi Liu
    Fucai Ma
    Jifei Yang
    Ying Sun
    Enqin Zheng
    Ming Yang
    Gengyuan Cai
    Jie Yang
    Zhenfang Wu
    Journal of Animal Science and Biotechnology, 14
  • [3] Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs
    Zhuang, Zhanwei
    Wu, Jie
    Qiu, Yibin
    Ruan, Donglin
    Ding, Rongrong
    Xu, Cineng
    Zhou, Shenping
    Zhang, Yuling
    Liu, Yiyi
    Ma, Fucai
    Yang, Jifei
    Sun, Ying
    Zheng, Enqin
    Yang, Ming
    Cai, Gengyuan
    Yang, Jie
    Wu, Zhenfang
    JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2023, 14 (01)
  • [4] Relevance of genetic relationship in GWAS and genomic prediction
    Pereira, Helcio Duarte
    Soriano Viana, Jose Marcelo
    Bastos Andrade, Andrea Carla
    Fonseca e Silva, Fabyano
    Paes, Geisa Pinheiro
    JOURNAL OF APPLIED GENETICS, 2018, 59 (01) : 1 - 8
  • [5] Relevance of genetic relationship in GWAS and genomic prediction
    Helcio Duarte Pereira
    José Marcelo Soriano Viana
    Andréa Carla Bastos Andrade
    Fabyano Fonseca e Silva
    Geísa Pinheiro Paes
    Journal of Applied Genetics, 2018, 59 : 1 - 8
  • [6] Effect of marker-data editing on the accuracy of genomic prediction
    Edriss, V.
    Guldbrandtsen, B.
    Lund, M. S.
    Su, G.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2013, 130 (02) : 128 - 135
  • [7] GWAS Enhances Genomic Prediction Accuracy of Caviar Yield, Caviar Color and Body Weight Traits in Sturgeons Using Whole-Genome Sequencing Data
    Song, Hailiang
    Dong, Tian
    Wang, Wei
    Yan, Xiaoyu
    Geng, Chenfan
    Bai, Song
    Hu, Hongxia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [8] Accounting for discovery bias in genomic prediction
    Thallman, R. M.
    Parham, J. T.
    Kuehn, L. A.
    Cassady, J. P.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 139 - 139
  • [9] Multi-omics-data-assisted genomic feature markers preselection improves the accuracy of genomic prediction
    Shaopan Ye
    Jiaqi Li
    Zhe Zhang
    Journal of Animal Science and Biotechnology, 11
  • [10] Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations
    Kadir Kizilkaya
    Rohan L Fernando
    Dorian J Garrick
    Genetics Selection Evolution, 46