ON A GENERALIZATION OF A THEOREM OF POPOV

被引:0
作者
Huang, Jing-Jing [1 ]
Li, Huixi [1 ]
机构
[1] Univ Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2020年 / 46卷 / 01期
关键词
Lattice points; exponential sums; Erdos-Turan inequality; DIOPHANTINE APPROXIMATION; PLANAR CURVES; RATIONAL-POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain sharp estimates for the number of lattice points under and near the dilation of a general parabola, the former generalizing an old result of Popov. We apply Vaaler's lemma and the Erdos-Turan inequality to reduce the two underlying counting problems to mean values of a certain quadratic exponential sums, whose treatment is subject to classical analytic techniques.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [41] A Witt Nadel vanishing theorem for threefolds
    Nakamura, Yusuke
    Tanaka, Hiromu
    COMPOSITIO MATHEMATICA, 2020, 156 (03) : 435 - 475
  • [42] A Groshev Type Theorem for Convergence on Manifolds
    Victor Beresnevich
    Acta Mathematica Hungarica, 2002, 94 : 99 - 130
  • [43] A note on Schmidt's subspace theorem
    Yan, Qiming
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) : 1639 - 1649
  • [44] A geometric linear Chabauty comparison theorem
    Hashimoto, Sachi
    Spelier, Pim
    ACTA ARITHMETICA, 2022, 202 (01) : 67 - 88
  • [45] On a Kurzweil type theorem via ubiquity
    Kim, Taehyeong
    ACTA ARITHMETICA, 2024, 213 (02) : 181 - 191
  • [46] On a Counting Theorem for Weakly Admissible Lattices
    Fregoli, Reynold
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (10) : 7850 - 7884
  • [47] Central Limit Theorem and Diophantine Approximations
    Sergey G. Bobkov
    Journal of Theoretical Probability, 2018, 31 : 2390 - 2411
  • [48] A note on Kronecker's approximation theorem
    Maksimova, D.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2025, 36 (03): : 729 - 734
  • [49] A localized Jarnik-Besicovitch theorem
    Barral, Julien
    Seuret, Stephane
    ADVANCES IN MATHEMATICS, 2011, 226 (04) : 3191 - 3215
  • [50] A nonarchimedean Ax-Lindemann theorem
    Chambert-Loir, Antoine
    Loeser, Francois
    ALGEBRA & NUMBER THEORY, 2017, 11 (09) : 1967 - 1999