ON A GENERALIZATION OF A THEOREM OF POPOV

被引:0
作者
Huang, Jing-Jing [1 ]
Li, Huixi [1 ]
机构
[1] Univ Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2020年 / 46卷 / 01期
关键词
Lattice points; exponential sums; Erdos-Turan inequality; DIOPHANTINE APPROXIMATION; PLANAR CURVES; RATIONAL-POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain sharp estimates for the number of lattice points under and near the dilation of a general parabola, the former generalizing an old result of Popov. We apply Vaaler's lemma and the Erdos-Turan inequality to reduce the two underlying counting problems to mean values of a certain quadratic exponential sums, whose treatment is subject to classical analytic techniques.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [31] Central Limit Theorem and Diophantine Approximations
    Bobkov, Sergey G.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 2390 - 2411
  • [32] Equidistribution from the Chinese Remainder Theorem
    Kowalski, E.
    Soundararajan, K.
    ADVANCES IN MATHEMATICS, 2021, 385
  • [33] A geometric linear Chabauty comparison theorem
    Hashimoto, Sachi
    Spelier, Pim
    ACTA ARITHMETICA, 2022, 202 (01) : 67 - 88
  • [34] A Groshev Type Theorem for Convergence on Manifolds
    Victor Beresnevich
    Acta Mathematica Hungarica, 2002, 94 : 99 - 130
  • [35] A note on Schmidt's subspace theorem
    Yan, Qiming
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) : 1639 - 1649
  • [36] FURTHER GENERALISATIONS OF A CLASSICAL THEOREM OF DABOUSSI
    De Koninck, Jean-Marie
    Katai, Imre
    COLLOQUIUM MATHEMATICUM, 2020, 162 (01) : 109 - 119
  • [37] Quantitative Chevalley–Weil theorem for curves
    Yuri Bilu
    Marco Strambi
    Andrea Surroca
    Monatshefte für Mathematik, 2013, 171 : 1 - 32
  • [38] Dirichlet's Theorem in Function Fields
    Ganguly, Arijit
    Ghosh, Anish
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (03): : 532 - 547
  • [39] An extension of the Khinchin-Groshev theorem
    Ghosh, Anish
    Royals, Robert
    ACTA ARITHMETICA, 2015, 167 (01) : 1 - 17
  • [40] A converse to a theorem of Gross, Zagier, and Kolyvagin
    Skinner, Christopher
    ANNALS OF MATHEMATICS, 2020, 191 (02) : 329 - 354