In this paper, we obtain sharp estimates for the number of lattice points under and near the dilation of a general parabola, the former generalizing an old result of Popov. We apply Vaaler's lemma and the Erdos-Turan inequality to reduce the two underlying counting problems to mean values of a certain quadratic exponential sums, whose treatment is subject to classical analytic techniques.
机构:
Qingdao Univ, Sch Math & Stat, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R ChinaQingdao Univ, Sch Math & Stat, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
Liu, Kui
Wu, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Creteil, CNRS UMR 8050, Lab Analyse & Math Appliquees, F-94010 Creteil, FranceQingdao Univ, Sch Math & Stat, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
Wu, Jie
Yang, Zhishan
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Math & Stat, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R ChinaQingdao Univ, Sch Math & Stat, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China