ON A GENERALIZATION OF A THEOREM OF POPOV

被引:0
|
作者
Huang, Jing-Jing [1 ]
Li, Huixi [1 ]
机构
[1] Univ Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2020年 / 46卷 / 01期
关键词
Lattice points; exponential sums; Erdos-Turan inequality; DIOPHANTINE APPROXIMATION; PLANAR CURVES; RATIONAL-POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain sharp estimates for the number of lattice points under and near the dilation of a general parabola, the former generalizing an old result of Popov. We apply Vaaler's lemma and the Erdos-Turan inequality to reduce the two underlying counting problems to mean values of a certain quadratic exponential sums, whose treatment is subject to classical analytic techniques.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条