Spectral Element Methods for Transitional Flows in Complex Geometries

被引:75
作者
Fischer, Paul F. [1 ]
Kruse, Gerald W. [2 ]
Loth, Francis [3 ]
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Juniata Coll, Dept Math & Comp Sci, Huntingdon, PA 16652 USA
[3] Univ Illinois, Dept Mech Engn, Chicago, IL 60607 USA
关键词
Spectral elements; incompressible Navier-Stokes; filtering; biofluid dynamics; nonconforming methods;
D O I
10.1023/A:1015188211796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the development and implementation of an efficient spectral element code for simulating transitional flows in complex three-dimensional domains. Critical to this effort is the use of geometrically nonconforming elements that allow localized refinement in regions of interest, coupled with a stabilized high-order time-split formulation of the semi-discrete Navier-Stokes equations. Simulations of transition in a model of an arteriovenous graft illustrate the potential of this approach in biomechanical applications.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 35 条
[1]  
ANAGNOSTOU G, 1990, THIRD INTERNATIONAL SYMPOSIUM ON DOMAIN DECOMPOSITION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, P157
[2]  
[Anonymous], 1994, NUMERICAL APPROXIMAT
[3]  
[Anonymous], 1989, STATE OF THE ART SUR
[4]  
ARSLAN N, 1999, THESIS U ILLINOIS CH
[5]   A SPECTRAL ELEMENT METHODOLOGY TUNED TO PARALLEL IMPLEMENTATIONS [J].
BENBELGACEM, F ;
MADAY, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :59-67
[6]  
Bernardi C, 1997, Handbook of numerical analysis, VV, DOI [10.1016/S1570-8659(97)80003-8, DOI 10.1016/S1570-8659(97)80003-8]
[7]   Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: Preserving boundary conditions and interpretation of the filter as a diffusion [J].
Boyd, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (01) :283-288
[8]   PERFORMANCE OF UNDER-RESOLVED 2-DIMENSIONAL INCOMPRESSIBLE-FLOW SIMULATIONS [J].
BROWN, DL ;
MINION, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (01) :165-183
[9]  
CANUTO C, 1988, MATH COMPUT, V51, P615, DOI 10.1090/S0025-5718-1988-0930226-2
[10]   Stabilized spectral methods for the Navier-Stokes equations: residual-free bubbles and preconditioning [J].
Canuto, C ;
Russo, A ;
van Kemenade, V .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) :65-83