Effect of temperature on the effective thermal conductivity of n-tetradecane-based nanofluids containing copper nanoparticles

被引:41
作者
Jiang, Haifeng [1 ]
Xu, Qianghui [1 ]
Huang, Chao [1 ]
Shi, Lin [1 ]
机构
[1] Tsinghua Univ, Dept Thermal Engn, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
来源
PARTICUOLOGY | 2015年 / 22卷
关键词
Nanofluid; Thermal conductivity; High temperature; Brownian motion; PHASE-CHANGE MATERIALS; HEAT-TRANSFER; MODEL; PARAMETERS; MECHANISMS; PARTICLES; FLUIDS; FLOW;
D O I
10.1016/j.partic.2014.10.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanofluids were prepared by dispersing Cu nanoparticles (similar to 20 nm) in n-tetradecane by a two-step method. The effective thermal conductivity was measured for various nanoparticle volume fractions (0.0001-0.02) and temperatures (306.22-452.66 K). The experimental data compares well with the Jang and Choi model. The thermal conductivity enhancement was lower above 391.06 K than for that between 306.22 and 360.77 K. The interfacial thermal resistance increased with increasing temperature. The effective thermal conductivity enhancement was greater than that obtained with a more viscous fluid as the base media at 452.66 K because of nanoconvection induced by nanoparticle Brownian motion at high temperature. (C) 2015 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 35 条
[1]   A Thermal Conductivity Model for Nanofluids Heat Transfer Enhancement [J].
Azari, A. ;
Kalbasi, M. ;
Moazzeni, A. ;
Rahman, A. .
PETROLEUM SCIENCE AND TECHNOLOGY, 2014, 32 (01) :91-99
[2]   Thermal conductivity and specific heat capacity measurements of CuO nanofluids [J].
Barbes, Benigno ;
Paramo, Ricardo ;
Blanco, Eduardo ;
Casanova, Carlos .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (02) :1883-1891
[3]   Nanodiamond Nanofluids for Enhanced Thermal Conductivity [J].
Branson, Blake T. ;
Beauchamp, Paul S. ;
Beam, Jeremiah C. ;
Lukehart, Charles M. ;
Davidson, Jim L. .
ACS NANO, 2013, 7 (04) :3183-3189
[4]  
Choi S.U.S., 1995, ASME FED, V231, P99
[5]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[6]   Thermal Conductivity Enhancement of Ethylene Glycol-Based Suspensions in the Presence of Silver Nanoparticles of Various Shapes [J].
Fang, Xin ;
Ding, Qing ;
Fan, Li-Wu ;
Yu, Zi-Tao ;
Xu, Xu ;
Cheng, Guan-Hua ;
Hu, Ya-Cai ;
Cen, Ke-Fa .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (03)
[7]   Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials [J].
Fang, Yutang ;
Yu, Huimin ;
Wan, Weijun ;
Gao, Xuenong ;
Zhang, Zhengguo .
ENERGY CONVERSION AND MANAGEMENT, 2013, 76 :430-436
[8]   Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid [J].
Ghanbarpour, M. ;
Haghigi, E. Bitaraf ;
Khodabandeh, R. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 53 :227-235
[9]   Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage [J].
He, Qinbo ;
Wang, Shuangfeng ;
Tong, Mingwei ;
Liu, Yudong .
ENERGY CONVERSION AND MANAGEMENT, 2012, 64 :199-205
[10]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734