Permutationally invariant state reconstruction

被引:86
作者
Moroder, Tobias [1 ,2 ]
Hyllus, Philipp [3 ]
Toth, Geza [3 ,4 ,5 ]
Schwemmer, Christian [6 ,7 ]
Niggebaum, Alexander [6 ,7 ]
Gaile, Stefanie [8 ]
Guehne, Otfried [1 ,2 ]
Weinfurter, Harald [6 ,7 ]
机构
[1] Univ Siegen, Naturwissensch Tech Fak, Walter Flex Str 3, D-57068 Siegen, Germany
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[3] Univ Basque Country UPV EHU, Dept Theoret Phys, E-48080 Bilbao, Spain
[4] Basque Fdn Sci, IKERBASQUE, E-48011 Bilbao, Spain
[5] Hungarian Acad Sci, Wigner Res Ctr Phys, H-1525 Budapest, Hungary
[6] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[7] Univ Munich, Fak Phys, D-80797 Munich, Germany
[8] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
关键词
QUANTUM; ENTANGLEMENT;
D O I
10.1088/1367-2630/14/10/105001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer.
引用
收藏
页数:25
相关论文
共 62 条
[1]   Multiparticle state tomography: Hidden differences [J].
Adamson, R. B. A. ;
Shalm, L. K. ;
Mitchell, M. W. ;
Steinberg, A. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[2]  
[Anonymous], 1999, Numerische Verfahren zur Losung unrestringierter Optimierungsaufgaben
[3]  
[Anonymous], 2003, Lie groups, Lie algebras, and representations
[4]  
[Anonymous], 1993, INTRO BOOTSTRAP
[5]  
[Anonymous], 2004, QUANTUM STATE ESTIMA, DOI DOI 10.1007/B98673
[6]   Collective uncertainty in partially polarized and partially decohered spin-1/2 systems [J].
Baragiola, Ben Q. ;
Chase, Bradley A. ;
Geremia, J. M. .
PHYSICAL REVIEW A, 2010, 81 (03)
[7]  
Baumgratz T, 2012, ARXIV12070358
[8]  
Blume-Kohout R, 2012, ARXIV12025270
[9]   Hedged Maximum Likelihood Quantum State Estimation [J].
Blume-Kohout, Robin .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[10]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441